next up previous
Next: About this document ... Up: localization of a commutative Previous: localization of a commutative

Existence of a point

LEMMA 04.6   Let $ A$ be a ring. If % latex2html id marker 1048
$ A\neq 0$ (which is equivalent to saying that % latex2html id marker 1050
$ 1_A\neq 0_A$ ), then we have % latex2html id marker 1052
$ \operatorname{Spec}(A)\neq \emptyset$ .

PROOF.. Assume % latex2html id marker 1057
$ A\neq 0$ . Then by Zorn's lemma we always have a maximal ideal $ \mathfrak{m}$ of $ A$ . A maximal ideal is a prime ideal of $ A$ and is therefore an element of $ \operatorname{Spec}(A)$ . % latex2html id marker 1054
$ \qedsymbol$

LEMMA 04.7   Let $ A$ be a ring, $ f$ be its element. We have $ O_f=\emptyset$ if and only if $ f$ is nilpotent.

PROOF.. We have already seen that $ A_f=0$ if and only if $ f$ is nilpotent. (Corollary 4.5). Since $ O_f$ is homeomorphic to $ \operatorname{Spec}(A_f)$ , we have the desired result. % latex2html id marker 1080
$ \qedsymbol$



2017-07-21