next up previous
Next: -curvature Up: a formula for -powers Previous: Jacobson's formula ( -powers

appendix

In this subsection we prove a formula which play a fairly important role in our theory.

PROPOSITION 6.4   Let $ p$ be a prime number. Let $ D$ be a derivation on a commutative algebra $ C$ of characteristic $ p$ . Assume that there exists a non commutative algebra $ A$ which contains $ C$ as a subalgebra and that there exists an element $ x\in A$ such that

$\displaystyle [x, f]=D(f)
$

holds for all $ f\in C$ . Then for any element $ f$ of $ C$ we have

$\displaystyle (x+f)^p=x^p+D^{p-1}(f)+f^p
$

PROOF.. We substitute $ a=f$ and $ b=x$ in the Proposition 6.2. We need to know $ \operatorname{ad}(T f + x)^{p-1} f $ . To do that, first we see by induction that

$\displaystyle \operatorname{ad}(T f + x)^k f=D^k f
$

holds for any $ k\in \mathbb{N}$ . In particular,

$\displaystyle \operatorname{ad}(T f + x)^{p-1} f=D^{p-1} f
$

So

\begin{displaymath}
s_j(f,x)=(1/j) \operatorname{coeff}(\operatorname{ad}(T f+x)...
...
D^{p-1} f & \text{if } j=1\\
0 &\text{otherwise}.
\end{cases}\end{displaymath}

$ \qedsymbol$



2007-12-26