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Abstract

Let (X, E) be a generalized polarized manifold of dim X = n ≥ 3 and
rank(E) = r ≥ 2. Assume that E is very ample and n − r ≥ 3. In this paper
we classfy (X, E) with g2(X, E) = h2(OX) + 1, where g2(X, E) is the second
cr-sectional geometric genus of (X, E).

1 Introduction.

Let X be a projective variety of dim X = n, and let L be an ample (resp. a nef
and big) line bundle on X. Then we call the pair (X,L) a polarized (resp. quasi-
polarized) variety, and (X,L) is called a polarized (resp. quasi-polarized) manifold
if X is smooth. In [6], we gave a new invariant of (X,L) which is called the i-th
sectional geometric genus gi(X,L) of (X,L) for every integer i with 0 ≤ i ≤ n. We
note that gi(X,L) is a generalization of the degree Ln and the sectional genus g(L).
(Namely g0(X,L) = Ln and g1(X,L) = g(L).) Here we recall the reason why we
call this invariant the sectional geometric genus. Let (X,L) be a quasi-polarized
manifold of dimension n ≥ 2 with Bs|L| = ∅, where Bs|L| is the base locus of
|L|. Let i be an integer with 1 ≤ i ≤ n, and let Y be the transversal intersection
of general n − i elements of |L|. In this case Y is a smooth projective variety of
dimension i. Then we can prove that gi(X,L) = hi(OY ), that is, gi(X,L) is the
geometric genus of Y .
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In [6], we study some fundamental properties of the i-th sectional geometric
genus. We were able to generalize some problems about the sectional genus to the
case of the sectional geometric genus. For example, in [6], we proposed the following
conjecture:

Conjecture 1.1 Let (X,L) be a quasi-polarized manifold of dim X = n. For every
integer i with 0 ≤ i ≤ n, gi(X,L) ≥ hi(OX) holds.

Here we note that if i = 0, then this is true because g0(X,L) = Ln ≥ 1 = h0(OX). If
i = 1, then this is a Fujita’s conjecture. (See [5], Chapter II, (13.7) or [2], Question
7.2.11.) Hence we can regard the inequality g(L) ≥ h1(OX) as a generalization of
the inequality Ln ≥ 1. In [6], we proved that this conjecture is true if Bs|L| =
∅. Moreover we classified polarized manifolds (X,L) which satisfy the following
properties:

(A) dim X ≥ 3, Bs|L| = ∅, and g2(X,L) = h2(OX) (see [6], Corollary 3.5 or see
Theorem 1.1 below),

(B) dim X ≥ 3, L is very ample, and g2(X,L) = h2(OX) + 1 (see [6], Theorem
3.6).

In a future paper, we will classify polarized manifolds (X,L) such that L is very
ample and g2(X,L)−h2(OX) ≤ 5. In [7] we study the conjecture for the case where
0 ≤ dim Bs|L| ≤ n − 1.

Furthermore in [6] we proved the following which is analogous to a theorem of
Sommese ([14], Theorem 4.1):

Theorem 1.1 (See [6], Corollary 3.5.) Let (X,L) be an n-dimensional polarized
manifold. Assume that n ≥ 3 and L is spanned. Then the following are equivalent:

(A) g2(X,L) = h2(OX).

(B) h0(KX + (n − 2)L) = 0.

(C) κ(KX + (n − 2)L) = −∞.

(D) KX′ + (n − 2)L′ is not nef, where (X ′, L′) is a reduction of (X,L).

(E) (X,L) is one of the following types:

(1) (Pn,OPn(1)).

(2) (Qn,OQn(1)).

(3) A scroll over a smooth curve.

(4) KX ∼ −(n − 1)L, that is, (X,L) is a Del Pezzo manifold.

(5) A hyperquadric fibration over a smooth curve.
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(6) A scroll over a smooth surface.

(7) Let (X ′, L′) be a reduction of (X,L).

(7-1) n = 4, (X ′, L′) = (P4,OP4(2)).

(7-2) n = 3, (X ′, L′) = (Q3,OQ3(2)).

(7-3) n = 3, (X ′, L′) = (P3,OP3(3)).

(7-4) n = 3, X ′ is a P2-bundle over a smooth curve C with (F ′, L′|F ′) =
(P2,OP2(2)) for any fiber F ′ of it.

In this way, it is interesting and very important to study the sectional geometric
genus, and we hope that by using this invariant we can study polarized manifolds
more deeply.

In [8], we considered the case of ample vector bundles. Let X be a smooth
projective variety of dim X = n and let E be an ample vector bundle of rank(E) = r.
Then the pair (X, E) is called a generalized polarized manifold. Here we assume that
1 ≤ r ≤ n − 1. In [8], for every integer i with 0 ≤ i ≤ n − r, we gave a vector
bundle’s version of the i-th sectional geometric genus, which is called the i-th cr-
sectional geometric genus of generalized polarized manifolds (X, E) (see Definition
2.3). Here we note that if r = 1, then this is the i-th sectional geometric genus
of polarized manifolds. Moreover this is a generalization of the cr-sectional genus
which was defined by Ishihara ([10]). Namely g1(X, E) is the cr-sectional genus.
(See Theorem 2.1.) Here we note that the cr-sectional genus is a generalization of
the curve genus which was defined by Ballico [1]. Therefore the i-th cr-sectional
geometric genus is a generalization of several important invariants.

Furthermore assume that E is an ample vector bundle of rank(E) = r ≥ 2 on X
with n−r ≥ 1 such that there exists a section s ∈ Γ(E) whose zero locus Z = (s)0 is
a submanifold of X of the expected dimension n− r. Then gi(X, E) = gi(Z, c1(E|Z))
(see Theorem 2.2). (Here we note that if E is an ample and spanned vector bundle
of rank(E) = r with n − r ≥ 1, then the above assumption is satisfied.)

Let (X, E) be a generalized polarized manifold of dim X = n and rank(E) = r
with n − r ≥ 1 such that E is ample and spanned. Then in [8] we proved that
gi(X, E) ≥ hi(OX) for every integer i with 0 ≤ i ≤ n − r. Moreover if in [8],
Theorem 2.7, we classified (X, E) with g2(E) = h2(OX), r ≥ 2, and n − r ≥ 3.

In this paper, for a very ample vector bundle E on X of rank(E) = r with
n − r ≥ 3, we will classify (X, E) with g2(X, E) = h2(OX) + 1. Main result is
Theorem 3.1.

2 Preliminaries.

Proposition 2.1 Let x0 = 1 and let xi be an indeterminate of weight i for every
integer i with i ≥ 1. For any non-negative integer k, there exist unique polynomials
of weight k, Tk ∈ Q[x1, · · · , xk], such that the following properties hold:
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(1) T0 = 1.

(2) For any formal power series
∑∞

i=0 xit
i, we put

tdt(
∞∑
i=0

xit
i) =

∞∑
k=0

Tk(x1, · · · , xk)t
k,

where t is an indeterminate.
If

∞∑
i=0

xit
i =

(
∞∑
i=0

yit
i

)(
∞∑
i=0

zit
i

)
,

then

tdt(
∞∑
i=0

xit
i) =

(
tdt(

∞∑
i=0

yit
i)

)(
tdt(

∞∑
i=0

zit
i)

)
.

(3) For the linear expression 1 + xt,

tdt(1 + xt) =
xt

1 − exp(−xt)
.

Proof. See [9], Chapter I, §1. 2

Definition 2.1 (1) Polynomials Tk ∈ Q[x1, · · · , xk] in Proposition 2.1 is called the
Todd polynomial of weight k.
(2) Let X be a smooth projective variety and let F be a vector bundle on X. Let
ct(F) =

∑
i≥0 ci(F)ti be the Chern polynomial of F . We put

tdt(F) = td(
∑
i≥0

ci(F)ti) =
∞∑

k=0

Tk(c1(F), · · · , ck(F))tk,

where t is an indeterminate. Furthermore, we put

tdk(c1(F), · · · , ck(F)) := Tk(c1(F), · · · , ck(F)),

and

td(F) :=
∞∑

k=0

tdk(c1(F), · · · , ck(F)).

Then td(F) is called the Todd class of F .

Definition 2.2 (1) Let X be a smooth projective variety and let F be a vector
bundle on X. Then for every integer j with j ≥ 0, the j-th Segre class sj(F) of F is
defined by the following equation: ct(F∨)st(F) = 1, where F∨ := HomOX

(F ,OX),
ct(F∨) is the Chern polynomial of F∨ and st(F) =

∑
j≥0 sj(F)tj.

(2) Let X be a smooth projective variety and let TX be the tangent bundle of X.
Then we put ci(X) := ci(TX), where ci(TX) is the i-th Chern class of TX .
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Definition 2.3 (See [8], Definition 2.1.) Let X be a smooth projective variety of
dim X = n and let E be an ample vector bundle of rank r on X with 1 ≤ r ≤ n.
Then for every integer i with 0 ≤ i ≤ n− r, the i-th cr-sectional geometric genus of
(X, E) is defined by the following:

gi(X, E) :=
n−r−i∑
j=0

(−1)n−r−j

(
n − r − i

j

)

×
n−r∑
k=0

{
(−(n − r − i − j)c1(E))n−r−k

(n − r − k)!

×
k∑

l=0

tdl(c1(X), . . . , cl(X))tdk−l(s1(E∨), . . . , sk−l(E∨))

}
cr(E)

+(−1)i+1χ(OX) +
n−i∑
k=0

(−1)n−i−khn−k(OX).

Theorem 2.1 Let X be a smooth projective variety of dim X = n and let E be an
ample vector bundle of rank(E) = r on X.
(1) If 1 ≤ r ≤ n − 1, then

g1(X, E) = 1 +
1

2
(KX + (n − r)c1(E))c1(E)n−r−1cr(E).

(2) If 1 ≤ r ≤ n − 2, then

g2(X, E)

= −1 + h1(OX)

+
1

12
(KX + (n − r)c1(E))(KX + (n − r − 1)c1(E))cr(E)c1(E)n−r−2

+
1

12
(c2(X) + (KX + c1(E))c1(E) − c2(E))cr(E)c1(E)n−r−2

+
n − r − 3

24
(2KX + (n − r)c1(E))cr(E)c1(E)n−r−1.

Proof. See [8], Theorem 2.5. 2

Definition 2.4 Let X be a smooth projective variety and let E be a vector bundle
of rank(E) = r on X.
(1) E is said to be ample and spanned if the tautological line bundle H(E) of PX(E)
is ample and spanned.
(2) E is said to be very ample if the tautological line bundle H(E) of PX(E) is very
ample.
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Remark 2.1 Let X be a smooth projective variety of dim X = n and let E be an
ample vector bundle of rank(E) = r on X.
(1) Assume that n−r ≥ 1 and E is spanned. Then there exists an element s ∈ H0(E)
such that the zero locus of s is a submanifold of X of dimension n − r.
(2) If E is very ample, then E is ample and spanned.
(3) Let E be a very ample (resp. ample and spanned) vector bundle on X and let F
be a quotient bundle of E . Then F is also very ample (resp. ample and spanned).

Theorem 2.2 Let X be a smooth projective variety of dim X = n and let E be an
ample vector bundle of rank r on X. Assume that 1 ≤ r ≤ n − 1 and E is spanned.
Let Z be a zero locus of a general section of H0(E). Then gi(X, E) = gi(Z, c1(E|Z))
for every integer i with 0 ≤ i ≤ n − r.

Proof. See [8], Theorem 2.2. 2

Theorem 2.3 (Lefschetz-Sommese) Let X be an n-dimensional smooth projec-
tive variety, and let E be an ample vector bundle of rank(E) = r ≥ 2 on X such
that there exists a section s ∈ Γ(E) whose zero locus Z = (s)0 is a submanifiold of
X of the expected dimension n− r. Let rq : Hq(X, Z) → Hq(Z, Z) be the restriction
homomorphism. Then

(1) rq is an isomorphism for q ≤ n − r − 1.

(2) rq is injective and its cokernel is torsion free for q = n − r.

Proof. See [12], 1.3 Theorem. 2

Remark 2.2 Let X, E , and Z be as in Theorem 2.3. By the Hodge theory, we
obtain that hq(OX) = hq(OZ) for every integer q with 0 ≤ q ≤ n − r − 1, and
hn−r(OX) ≤ hn−r(OZ).

Theorem 2.4 Let X be a smooth projective variety of dim X = n and let E be an
ample vector bundle of rank r on X. Assume that 1 ≤ r ≤ n and E is spanned.
Then gi(X, E) ≥ hi(OX) for 0 ≤ i ≤ n − r.

Proof. See [8], Corollary 2.6. 2

Theorem 2.5 Let X be a smooth projective variety of dim X = n ≥ 3 and let E be
a very ample vector bundle of rank r ≥ 2 on X. Then g2(X, det(E)) = h2(OX) + 1
if and only if (X, E) is one of the following:

(1) (P5,OP5(1)⊕2).

(2) (Q4,OQ4(1)⊕2).

(3) X ∼= P3, and E ∼= OP3(1)⊕4, OP3(1)⊕2⊕OP3(2), TP3, OP3(1)⊕OP3(3), OP3(2)⊕2,
or N (2), where N is the null-correlation bundle on P3.
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(4) X ∼= Q3, and E ∼= OQ3(1)⊕3,OQ3(1) ⊕OQ3(2), or S(2), where S is the Spinor
bundle on Q3.

(5) X ∼= P2 × P1, and E ∼= O(2, 1) ⊕O(1, 1) or p∗1TP2 ⊗ p∗2OP1(1), where pi is the
i-th projection for i = 1, 2 and O(a, b) := p∗1OP2(a) ⊗ p∗2OP1(b).

(6) (X,A⊕2), where (X,A) is a Del Pezzo 3-fold of degree d ( 3 ≤ d ≤ 7 ).

(7) n = 3 and there exists a fibration f : X → W over a smooth elliptic curve W
such that (F, EF ) ∼= (P2,OP2(1) ⊕OP2(2)) for every fiber F of f .

(8) n = 3 and there exists a fibration f : X → W over a smooth elliptic curve W
such that (F, EF ) ∼= (Q2,OQ2(1)⊕2) for a general fiber F of f .

Proof. See [11]. 2

3 Main Theorem.

Theorem 3.1 Let (X, E) be a generalized polarized manifold of dim X = n ≥ 3
and rank(E) = r ≥ 2. Assume that n − r ≥ 3 and E is very ample. If g2(X, E) =
h2(OX) + 1, then (X, E) is one of the following:

(a) (P7,OP7(1)⊕2).

(b) (P7,OP7(1)⊕4).

(c) (P5,OP5(2) ⊕OP5(1)).

(d) (Q6,OQ6(1)⊕3).

(e) (Q6,OQ6(1)⊕2).

(f) X is a 5-dimensional Fano manifold of index 4 and r = 2. Moreover Pic(X) ∼=
Z · H and El

∼= H⊕2
l for every line l of (X,H).

(g) There exists a surjective morphism f : X → W over a smooth elliptic curve W
such that a general fiber of f is a smooth hyperquadric Q4 with E|F ∼= OQ4(1)⊕2.

(h) There exists a surjective morphism f : X → W over a smooth elliptic curve
W such that a general fiber F of f is PP1(G) for some vector bundle G of rank
4 on P1 and E|F = ⊕2

j=1(H(G) + π∗OP1(bj)), where H(G) is the tautological
line bundle of G and π : F → P1 is the bundle projection.
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Proof. By assumption, there exists a section s ∈ H0(E) such that the zero locus
Z := (s)0 is a smooth projective variety of dim Z = n − r ≥ 3. Then by Theorem
2.2 and Theorem 2.3 we get that

g2(Z, c1(E|Z)) = g2(X, E)

= h2(OX) + 1

= h2(OZ) + 1.

Here we note that dim Z ≥ 3 by assumption. Hence by Theorem 2.5, (Z, E|Z) is one
of the following:

(I) (P5,OP5(1)⊕2).

(II) (Q4,OQ4(1)⊕2).

(III) Z ∼= P3, and E|Z ∼= OP3(1)⊕4, OP3(1)⊕2 ⊕ OP3(2), TP3 , OP3(1) ⊕ OP3(3),
OP3(2)⊕2, or N (2), where N is the null-correlation bundle on P3.

(IV) Z ∼= Q3, and E|Z ∼= OQ3(1)⊕3,OQ3(1)⊕OQ3(2), or S(2), where S is the Spinor
bundle on Q3.

(V) Z ∼= P2 × P1, and E|Z ∼= O(2, 1)⊕O(1, 1) or p∗1TP2 ⊗ p∗2OP1(1), where pi is the
i-th projection for i = 1, 2 and O(a, b) := p∗1OP2(a) ⊗ p∗2OP1(b).

(VI) (Z,A⊕2), where (Z,A) is a Del Pezzo 3-fold of degree d ( 3 ≤ d ≤ 7 ).

(VII) n− r = 3 and there exists a fibration h : Z → W over a smooth elliptic curve
W such that (Fh, EFh

) ∼= (P2,OP2(1) ⊕OP2(2)) for every fiber Fh of h.

(VIII) n− r = 3 and there exists a fibration h : Z → W over a smooth elliptic curve
W such that (Fh, EFh

) ∼= (Q2,OQ2(1)⊕2) for a general fiber Fh of h.

(A) Assume that Z ∼= Pn−r. Then (Z, E|Z) is either (I) or (III).
Then by [12], Theorem A, we get that (X, E) ∼= (Pn,OPn(1)⊕r) since n− r ≥ 3. We
note that h2(OX) = 0. We also note the following:

KX = OPn(−(n + 1)),

c2(X) =

(
n + 1

2

)
OPn(1)2,

c1(E) = rOPn(1),

c2(E) =

(
r

2

)
OPn(1)2,

cr(E) = OPn(1)r.

If (Z, E|Z) is the case (I) (resp. (III)), then n − r = 5 (resp. 3). Here we calculate
g2(X, E) in this case.
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Assume that (Z, E|Z) is the case (III). In this case n − r = 3 and n ≥ 5. Then
by Theorem 2.1 (2)

g2(X, E) = −1 +
1

12
(n − 3)(2n2 − 24n + 76).

Since g2(X, E) = h2(OX) + 1 = 1, we obtain that n = 7 and r = 4. Namely
(X, E) ∼= (P7,O(1)⊕4). This is the type (b) in Theorem 3.1.

Assume that (Z, E|Z) is the case (I). In this case n − r = 5 and n ≥ 7. Then by
Theorem 2.1 (2)

g2(X, E) = −1 +
1

4
(n − 5)3(5n2 − 68n + 232).

Since g2(X, E) = h2(OX) + 1 = 1, we obtain that n = 7 and r = 2. Namely
(X, E) ∼= (P7,OP7(1)⊕2). This is the type (a) in Theorem 3.1.
(B) Assume that Z ∼= Qn−r. Then (Z, E|Z) is either (II) or (IV).
Then by [12], Theorem B, we get that (X, E) ∼= (Pn,OPn(2) ⊕ OPn(1)⊕r−1) or
(Qn,OQn(1)⊕r) since n − r ≥ 3. We note that h2(OX) = 0.

If (Z, E|Z) is the case (IV) (resp. (II)), then n − r = 3 (resp. 4). Here we
calculate g2(X, E) in this case.

Assume that (X, E) = (Pn,OPn(2) ⊕OPn(1)⊕r−1). We also note the following:

KX = OPn(−(n + 1)),

c2(X) =

(
n + 1

2

)
OPn(1)2,

c1(E) = (r + 1)OPn(1),

c2(E) =

(
2(r − 1) +

(
r − 1

2

))
OPn(1)2,

cr(E) = 2OPn(1)r.

If (Z, E|Z) is the case (IV), then n − r = 3 and n ≥ 5. By Theorem 2.1 (2)

g2(X, E) = −1 +
1

6
(n − 2)(2n2 − 17n + 39).

Since g2(X, E) = h2(OX) + 1 = 1, we obtain that n = 5 and r = 2. Namely
(X, E) ∼= (P5,OP5(2) ⊕OP5(1)). This is the type (c) in Theorem 3.1.

If (Z, E|Z) is the case (II), then n − r = 4 and n ≥ 6. By Theorem 2.1 (2)

g2(X, E) = −1 +
1

6
(n − 3)2

(
7n2 − 66n + 158

)
.

But in this case g2(X, E) ̸= h2(OX) + 1.
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Assume that (X, E) = (Qn,OQn(1)⊕r). We also note the following:

KX = OQn(−n),

c2(X) =

((
n + 2

2

)
− 2n

)
OQn(1)2,

c1(E) = rOQn(1),

c2(E) =

(
r

2

)
OQn(1)2,

cr(E) = OQn(1)r.

If (Z, E|Z) is the case (IV), then n − r = 3 and n ≥ 5. By Theorem 2.1 (2)

g2(X, E) = −1 +
1

6
(n − 3)(2n2 − 21n + 58).

Since g2(X, E) = h2(OX) + 1 = 1, we obtain that n = 6 and r = 3. Namely
(X, E) ∼= (Q6,OQ6(1)⊕3). This is the type (d) in Theorem 3.1.

If (Z, E|Z) is the case (II), then n − r = 4 and n ≥ 6. By Theorem 2.1 (2)

g2(X, E) = −1 +
1

6
(n − 4)2(7n2 − 80n + 231).

Since g2(X, E) = h2(OX) + 1 = 1, we obtain that n = 6 and r = 2. Namely
(X, E) ∼= (Q6,OQ6(1)⊕2). This is the type (e) in Theorem 3.1.
(C) Assume that Z ∼= P2 × P1. Then by Theorem 2.3, H i(X, Z) ∼= H i(Z, Z) for
i = 1, 2. By the Hodge theory, we obtain that hi(OX) = hi(OZ) for i = 1, 2. Hence
ρ : Pic(X) → Pic(Z) is an isomorphism by the following commutative diagram:

H1(Z, Z) H1(OZ) Pic(Z) H2(Z, Z) H2(OZ)

H1(X, Z) H1(OX) Pic(X) H2(X, Z) H2(OX)

- - - -

- - - -

? ? ? ? ?

ρ

We take p∗1OP2(1)⊗p∗2OP1(1) ∈ Pic(Z), where pi is the i-th projection for i = 1, 2.
Then there exists H ∈ Pic(X) such that H|Z = p∗1OP2(1) ⊗ p∗2OP1(1). Then by
considering the second projection p2 : Z → P1, we obtain that (Z,H|Z) is a scroll
over P1. Hence by [13] Theorem B, (X,H) is a scroll over P1 such that E|F ∼=
OPn−1(1)⊕r for every fiber F of f : X → P1 and f |Z = p2. In particular E|FZ

is split,
where FZ is a fiber of p2 : Z → P1. On the other hand since E|Z ∼= O(2, 1)⊕O(1, 1)
or p∗1TP2 ⊗p∗2OP1(1), we obtain that r = 2, and E|FZ

∼= OP2(2)⊕OP2(1) or TP2 . Since
E|FZ

is split, we get that E|FZ
∼= OP2(2)⊕OP1(1). But since E|F ∼= OPn−1(1)⊕2, this

is a contradiction. Hence this case cannot occur.
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(D) Assume that (Z, E|Z) ∼= (Z,A⊕2), where (Z,A) is a Del Pezzo 3-fold of degree
d, where d is an integer with 3 ≤ d ≤ 7.

In this case n − r = 3 and r = 2. Namely n = 5 and r = 2.
(D.1) If ρ(Z) = 1, then by [12], 2.5 Proposition, we get the following:

(D.1.1) X = P5 and E = OP5(3) ⊕OP5(1) or E has the generic splitting type (2, 2).

(D.1.2) X = Q5 and El = OP1(2) ⊕OP1(1) for every line l ⊂ Q5.

(D.1.3) X is a 5-dimensional Fano manifold of index 4 and r = 2. Moreover Pic(X) ∼=
Z · H and El

∼= H⊕2
l for every line l of (X,H).

Claim 3.1 The cases (D.1.1) and (D.1.2) are impossible.

Proof. By [12], 2.4, we get that Pic(X) ∼= Pic(Z), A is the ample generator of
Pic(Z), and HZ = A, where H is the ample generator of Pic(X).

First we assume that (X, E) is the case (D.1.1). Then c1(E) = OP5(4). On the
other hand c1(E) = 2OP5(1) because c1(E|Z) = 2A. But this is a contradiction.

Next we assume that (X, E) is the case (D.1.2). Then since c1(E|Z) = 2A, we
obtain that c1(E) = 2OQ5(1). We put OP1(a) := OQ5(1)|l for a line l ⊂ Q5. Then
c1(E)|l = OP1(2a). On the other hand c1(E)|l = OP1(3) by assumption of (D.1.2).
Hence 2a = 3. But this is impossible because a ∈ Z. This completes the proof of
Claim 3.1. 2

If (X, E) is the case (D.1.3), then we get the type (f) in Theorem 3.1.
(D.2) If ρ(Z) ≥ 2, then by [3], Theorem 1, we obtain the following:
There exist a smooth projective surface S and an ample vector bundle F of rank 4
on S such that X = PS(F), where

S ∼=
{

P1 × P1 if Z ∼= P1 × P1 × P1,
P2 otherwise.

Moreover E = H(F) ⊗ f∗(G), where H(F) is the tautological line bundle of F
on X, f : X → S is the bundle projection and G, a vector bundle of rank 2 on S, is
the dual of the kernel of the vector bundle surjection F → B corresponding to the
fiberwise inclusion of Z = PS(B) into X.

Claim 3.2 E = (H(F) ⊗ f∗(B))⊕2 for some line bundle B ∈ Pic(S).

Proof. First we note that f |Z = p and H(F)|Z = H(B). Since E = H(F)⊗f∗(G), we
get that E|Z = H(F)|Z ⊗ (f∗(G))Z

∼= H(B)⊗p∗(G), where p : Z = PS(B) → S is the
projection. Hence c1(E|Z) = 2H(B) + c1(p

∗(G)). Therefore AZ = H(B) ⊗ p∗(B) for
some B ∈ Pic(S). Since EZ = AZ ⊕AZ , we obtain that p∗(G) = (H(B)−1⊗AZ)⊕2 =
(p∗(B))⊕2. Therefore G ∼= B⊕B and E = H(F)⊗f∗(G) = (H(F)⊗f∗(B))⊕2. This
completes the proof of Claim 3.2. 2
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Next we give the formula of g2(X, E). We note the following:

KX = −4H(F) + f∗(KS + c1(F)),

c2(X) = c2(f
∗TS) + c1(f

∗F∨ ⊗ H(F))c1(f
∗TS) + c2(f

∗F∨ ⊗ H(F)),

c1(E) = 2H(F) + 2f∗(B),

c2(E) = (H(F) + f∗(B))2.

By Theorem 2.1 (2), we get that following:

g2(X, E)(1)

= −1 + h1(OX) +
1

12

{
2(KS + c1(F))2 + 48(KS + c1(F))B

+96B2 + 8(KS + c1(F))c1(F) − 4c1(F)2 + 2c2(S)

+6c1(S)c1(F) + 24c1(S)B} .

Here we note that h1(OX) = 0 in this case.

Claim 3.3 Assume that S ∼= P2. Then this case cannot occur.

Proof. We put c1(F) = OP2(f) and B = OP2(b), where f and b are integers. Then
by (1) above,

g2(X, E) = −1 +
1

2
(f2 + 8fb + 16b2 − 3f − 12b + 4).

If g2(X, E) = h2(OX)+1, then f2 +8fb+16b2 − 3f − 12b = 0. Namely (f +4b)(f +
4b − 3) = 0. Hence f + 4b = 0 or f + 4b = 3.

Since E is ample, H(F) ⊗ f∗(B) is also ample by Claim 3.2. We put H :=
f∗(H(F) ⊗ f∗(B)). Then X ∼= PP2(H) and H(H) = H(F) ⊗ f∗(B).

Since H(F)⊗ f∗(B) is ample, so is H(H). Hence H is ample. Here we note that
H = f∗(H(F) ⊗ f∗(B)) = F ⊗ B. Then c1(H) = c1(F) + 4B = OP2(f + 4b). Since
H is ample, f + 4b > 0 and we obtain that f + 4b = 3.

Let l be a line in P2. Then c1(H)l = f + 4b = 3. But since rank(H) = 4 and
l ∼= P1, we obtain that c1(H)l ≥ 4, and this is a contradiction. This completes the
proof of Claim 3.3. 2

Next we consider the case where S ∼= P1 × P1.

Claim 3.4 Assume that S ∼= P1 × P1. Then this case cannot occur.

Proof. First we note that for any member D ∈ Pic(P1 × P1), we can write D =
p∗1(O(a)) ⊗ p∗2(O(b)) for some integers a and b, where pi : P1 × P1 → P1 is the i-th
projection. We put O(a, b) := p∗1(O(a)) ⊗ p∗2(O(b)). We also note that c1(B) =
O(2t1, 2t2) for some integers t1 and t2 because KZ = −2H(B) + (f |Z)∗(KP1×P1 +
c1(B)), KP1×P1 = O(−2,−2), and KZ = 2D for some D ∈ Pic(Z). Since (Z,H(B)⊗
(f |Z)∗(B)) is a Del Pezzo manifold, we obtain that 2(H(B) + (f |Z)∗(B)) = −KZ =
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2H(B)+(f |Z)∗(O(2−2t1, 2−2t2). We put B = O(b1, b2). Then we get that ti+bi = 1
for i = 1, 2. On the other hand, by the following exact sequence

0 → G∨ → F → B → 0,

we obtain that c1(F) = c1(G∨) + c1(B). Hence c1(F) = O(2t1 − 2b1, 2t2 − 2b2)
because G ∼= B ⊕ B. Since ti + bi = 1 for i = 1, 2, we obtain that

c1(F) = O(2 − 4b1, 2 − 4b2).(2)

Since F is ample, b1 ≤ 0 and b2 ≤ 0 are obtained.
Next we calculate g2(X, E) by using b1 and b2. We note that

KS = O(−2,−2)(3)

c2(S) = 4.(4)

By (1), (2), (3), and (4), we obtain that g2(X, E) = 1 − 4b1 − 4b2. Since g2(X, E) =
h2(OX) + 1 = 1, we get that b1 = b2 = 0 and c1(F) = O(2, 2). Let F ′ be a fiber
of the first projection P1 × P1 → P1. Then c1(F)F ′ = 2. But since F is ample,
rank(F) = 4, and F ′ ∼= P1, we obtain that c1(F)F ′ ≥ 4. This is a contradiction.
This completes the proof of Claim 3.4. 2

(E) Assume that n − r = 3 and there exists a fibration h : Z → W over a smooth
elliptic curve W such that (Fh, E|Fh

) ∼= (P2,OP2(1)⊕OP2(2)) for every fiber Fh of h
or (Fh, E|Fh

) ∼= (Q2,OQ2(1)⊕2) for a general fiber Fh of h.
In this case, we have n = 5 and r = 2.

Claim 3.5 Let α : X → α(X) be the Albanese map of X. Then α(X) is a smooth
elliptic curve, W ∼= α(X), and h = α|Z.

Proof. Since h1(OX) = h1(OZ) = 1, we obtain that α(X) = Alb(X) and α(X)
is a smooth elliptic curve. (Here Alb(X) denotes the Albanese variety of X.) Let
α|Z : Z → α(X). Then α|Z is surjective. Here we note that h : Z → W is a
surjective morphism with connected fibers such that a general fiber Fh is P2 or Q2.
Hence α|Z(Fh) is a point. Therefore by [2], Lemma 4.1.13, there exists a surjective
morphism δ : W → α(X) such that α|Z = δ ◦ h. But since h has connected fibers,
δ is an isomorphism. 2

Let Fh (resp. Fα) be a general fiber of h (resp. α). Since KFh
+ c1(E|Fh

) = OFh
,

h = α|Z , and Z ∩ Fα = Fh, we obtain that

[⋆] ((KX + 2c1(E))|Fα)|Fh
∼= ((KX + 2c1(E))|Z)|Fα

∼= (KZ + c1(E|Z))|Fh
∼= OFh

.

Here we note that since Z is the zero locus of a general member of H0(E), a
general fiber Fh of h : Z → W is the zero locus of a general member of H0(E|Fα) by
Claim 3.5.
(E.1) If Fh = P2, then by [12], Theorem A, we get that (Fα, E|Fα) ∼= (P4,OP4(1)⊕2).
In particular, (KX + 2c1(E))|Fα

∼= OP4(−1). But by [⋆], this is impossible.
(E.2) Assume that (Fh, E|Fh

) ∼= (Q2,OQ2(1)⊕2). By [12], Theorem B, (Fα, E|Fα) is
one of the following:
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(E.2.1) (Fα, E|Fα) ∼= (P4,OP4(2) ⊕OP4(1)).

(E.2.2) (Fα, E|Fα) ∼= (Q4,OQ4(1)⊕2).

(E.2.3) Fα = PP1(G) for some vector bundle G of rank 4 on P1 and E|Fα = ⊕2
j=1(H(G)+

π∗OP1(bj)), where H(G) is the tautological line bundle of G and π : Fα → P1

is the bundle projection.

If (Fα, E|Fα) is the case (E.2.1), then (KX + 2c1(E))|Fα
∼= OP4(1), and this is

impossible by [⋆].
By putting f := α, the case (E.2.2) (resp. (E.2.3)) is the type (g) (resp. (h)) in

Theorem 3.1.
These complete the proof of Theorem 3.1. 2

Example 3.1 Here we will give an example of the case (f) in Theorem 3.1.
Let (X,H) be a 5-dimensional Fano manifold of index 4 with H5 ≥ 3 and let

E = H⊕2. Then E is a very ample vector bundle of rank 2 and

c1(E) = 2H,

c2(E) = H2.

On the other hand

KX = −4H,

c2(X)H3 = 12 + 5H5.

Hence by the definition of the second cr-sectional geometric genus, we obtain that
g2(X, E) = 1 = h2(OX) + 1.

Problem 3.1 Does there exist a very ample vector bundle E of rank(E) = 2 on a
Fano 5-fold X of index 4 such that E is not split and g2(X, E) = h2(OX) + 1 ?

Example 3.2 Here we consider the case (g) in Theorem 3.1.
Let (X,L) be a hyperquadric fibration over a smooth elliptic curve C. Let

f : X → C be its morphism. We put F := f∗(L). Then F is a locally free
sheaf of rank(F) = n + 1, where n = dim X. In this case there exists an embedding
ι : X → PC(F) such that f = π◦ι and X ∈ |2H(F)+π∗(D)|, where π : PC(F) → C
is the projection, H(F) is the tautological line bundle of PC(F), and D ∈ Pic(C).
Here we assume that n = 5 and we put E := L ⊕ L. Then E is an ample vector
bundle of rank(E) = 2 on X.

Next we calculate g2(X, E). We note the following:

H(F)|X = L

c1(E) = 2L

c2(E) = L2

KX = −4L + f∗(c1(F) + D)

c2(X) = 7L2 − 3Lf∗(c1(F)) − 2Lf∗(D).
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We put b = deg D and e = degF . By Theorem 2.1 (2) and the above equalities,
we obtain that g2(X, E) = b + e. On the other hand the sectional genus of (X,L)
g1(X,L) = 1 + b + e (see [4]). By [4], Example 3.9 and Example 3.11, there exists a
hyperquadric fibration (X,L) over a smooth elliptic curve C with dim X = 5 such
that (b, e, L5) = (1, 0, 1) or (0, 1, 2). In these cases g2(X, E) = 1 = h2(OX) + 1.

But we note that E is not very ample in each case. First we can prove that L is
not very ample. (If L is very ample, then X ∼= P5 or Q5 because L5 = 1 or 2. But
this is impossible because Pic(X) ∼= Z in each case.) Therefore E is not very ample
because E → L is surjective. (See Remark 2.1 (3).)

The existence of the case (h) in Theorem 3.1 is uncertain at present.
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