On generalized polarized manifolds of which the second *cr***-sectional geometric** $\textbf{genus is equal to } h^2(\mathcal{O})+1. \text{ }^{* \dagger \ddagger}$

Yoshiaki FUKUMA

February 21, 2012

Abstract

Let (X, \mathcal{E}) be a generalized polarized manifold of dim $X = n \geq 3$ and rank(\mathcal{E}) = $r \geq 2$. Assume that \mathcal{E} is very ample and $n - r \geq 3$. In this paper we classfy (X, \mathcal{E}) with $g_2(X, \mathcal{E}) = h^2(\mathcal{O}_X) + 1$, where $g_2(X, \mathcal{E})$ is the second c_r -sectional geometric genus of (X, \mathcal{E}) .

1 Introduction.

Let X be a projective variety of dim $X = n$, and let L be an ample (resp. a nef and big) line bundle on *X*. Then we call the pair (*X, L*) a *polarized* (resp. *quasipolarized*) *variety*, and (*X, L*) is called a polarized (resp. quasi-polarized) *manifold* if *X* is smooth. In [6], we gave a new invariant of (X, L) which is called the *i*-th *sectional geometric genus* $q_i(X, L)$ *of* (X, L) for every integer *i* with $0 \le i \le n$. We note that $g_i(X, L)$ is a generalization of the degree L^n and the sectional genus $g(L)$. (Namely $g_0(X, L) = L^n$ and $g_1(X, L) = g(L)$.) Here we recall the reason why we call this invariant the sectional geometric genus. Let (X, L) be a quasi-polarized manifold of dimension $n \geq 2$ with $Bs|L| = \emptyset$, where $Bs|L|$ is the base locus of *|L|*. Let *i* be an integer with $1 \leq i \leq n$, and let *Y* be the transversal intersection of general $n - i$ elements of $|L|$. In this case Y is a smooth projective variety of dimension *i*. Then we can prove that $g_i(X, L) = h^i(\mathcal{O}_Y)$, that is, $g_i(X, L)$ is the geometric genus of *Y* .

[∗]Key words and phrases. Ample vector bundles, generalized polarized manifold, sectional geometric genus, *cr*-sectional geometric genus.

*[†]*2000 *Mathematics Subject Classification.* Primary 14J60; Secondary 14C17, 14C20, 14C40, 14H60, 14J30, 14J40.

*[‡]*This research was partially supported by the Grant-in-Aid for Young Scientists (B) (No.14740018), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

In [6], we study some fundamental properties of the *i*-th sectional geometric genus. We were able to generalize some problems about the sectional genus to the case of the sectional geometric genus. For example, in [6], we proposed the following conjecture:

Conjecture 1.1 Let (X, L) be a quasi-polarized manifold of dim $X = n$. For every *integer i with* $0 \leq i \leq n$, $g_i(X, L) \geq h^i(\mathcal{O}_X)$ *holds.*

Here we note that if $i = 0$, then this is true because $g_0(X, L) = L^n \geq 1 = h^0(\mathcal{O}_X)$. If $i = 1$, then this is a Fujita's conjecture. (See [5], Chapter II, (13.7) or [2], Question 7.2.11.) Hence we can regard the inequality $g(L) \geq h^1(\mathcal{O}_X)$ as a generalization of the inequality $L^n \geq 1$. In [6], we proved that this conjecture is true if $Bs|L| =$ *∅*. Moreover we classified polarized manifolds (*X, L*) which satisfy the following properties:

- (A) dim $X \geq 3$, $Bs|L| = \emptyset$, and $g_2(X, L) = h^2(\mathcal{O}_X)$ (see [6], Corollary 3.5 or see Theorem 1.1 below),
- (B) dim $X \geq 3$, L is very ample, and $g_2(X, L) = h^2(\mathcal{O}_X) + 1$ (see [6], Theorem 3.6).

In a future paper, we will classify polarized manifolds (*X, L*) such that *L* is very ample and $g_2(X, L) - h^2(\mathcal{O}_X) \leq 5$. In [7] we study the conjecture for the case where $0 \leq \dim \text{Bs}|L| \leq n-1.$

Furthermore in [6] we proved the following which is analogous to a theorem of Sommese ([14], Theorem 4.1):

Theorem 1.1 (See [6], Corollary 3.5.) *Let* (*X, L*) *be an n-dimensional polarized manifold.* Assume that $n \geq 3$ and L is spanned. Then the following are equivalent:

(A)
$$
g_2(X, L) = h^2(\mathcal{O}_X)
$$
.

(B) $h^0(K_X + (n-2)L) = 0.$

(C)
$$
\kappa(K_X + (n-2)L) = -\infty.
$$

- (D) $K_{X'} + (n-2)L'$ *is not nef, where* (X', L') *is a reduction of* (X, L) *.*
- (E) (*X, L*) *is one of the following types:*
	- (1) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)).$
	- (2) $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)).$
	- (3) *A scroll over a smooth curve.*
	- (4) $K_X \sim -(n-1)L$, that is, (X, L) is a Del Pezzo manifold.
	- (5) *A hyperquadric fibration over a smooth curve.*

(6) *A scroll over a smooth surface.*

\n- (7) Let
$$
(X', L')
$$
 be a reduction of (X, L) .
\n- (7-1) $n = 4$, $(X', L') = (\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2))$.
\n- (7-2) $n = 3$, $(X', L') = (\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2))$.
\n- (7-3) $n = 3$, $(X', L') = (\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(3))$.
\n- (7-4) $n = 3$, X' is a \mathbb{P}^2 -bundle over a smooth curve C with $(F', L'|_{F'}) = (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2))$ for any fiber F' of it.
\n

In this way, it is interesting and very important to study the sectional geometric genus, and we hope that by using this invariant we can study polarized manifolds more deeply.

In [8], we considered the case of ample vector bundles. Let *X* be a smooth projective variety of dim $X = n$ and let $\mathcal E$ be an ample vector bundle of rank($\mathcal E$) = *r*. Then the pair (X, \mathcal{E}) is called a *generalized polarized manifold*. Here we assume that 1 ≤ r ≤ $n-1$. In [8], for every integer *i* with $0 \le i \le n-r$, we gave a vector bundle's version of the *i*-th sectional geometric genus, which is called the *i-th crsectional geometric genus of generalized polarized manifolds* (X, \mathcal{E}) (see Definition 2.3). Here we note that if $r = 1$, then this is the *i*-th sectional geometric genus of polarized manifolds. Moreover this is a generalization of the *cr*-sectional genus which was defined by Ishihara ([10]). Namely $g_1(X, \mathcal{E})$ is the c_r -sectional genus. (See Theorem 2.1.) Here we note that the *cr*-sectional genus is a generalization of the curve genus which was defined by Ballico $|1|$. Therefore the *i*-th c_r -sectional geometric genus is a generalization of several important invariants.

Furthermore assume that $\mathcal E$ is an ample vector bundle of rank $(\mathcal E) = r > 2$ on X with $n-r \geq 1$ such that there exists a section $s \in \Gamma(\mathcal{E})$ whose zero locus $Z = (s)_0$ is a submanifold of *X* of the expected dimension $n-r$. Then $g_i(X, \mathcal{E}) = g_i(Z, c_1(\mathcal{E}|_Z))$ (see Theorem 2.2). (Here we note that if $\mathcal E$ is an ample and spanned vector bundle of rank $(\mathcal{E}) = r$ with $n - r \geq 1$, then the above assumption is satisfied.)

Let (X, \mathcal{E}) be a generalized polarized manifold of dim $X = n$ and rank $(\mathcal{E}) = r$ with $n - r \geq 1$ such that $\mathcal E$ is ample and spanned. Then in [8] we proved that $g_i(X, \mathcal{E}) \geq h^i(\mathcal{O}_X)$ for every integer *i* with $0 \leq i \leq n-r$. Moreover if in [8], Theorem 2.7, we classified (X, \mathcal{E}) with $g_2(\mathcal{E}) = h^2(\mathcal{O}_X)$, $r \ge 2$, and $n - r \ge 3$.

In this paper, for a very ample vector bundle $\mathcal E$ on X of rank $(\mathcal E) = r$ with $n - r \geq 3$, we will classify (X, \mathcal{E}) with $g_2(X, \mathcal{E}) = h^2(\mathcal{O}_X) + 1$. Main result is Theorem 3.1.

2 Preliminaries.

Proposition 2.1 *Let* $x_0 = 1$ *and let* x_i *be an indeterminate of weight i for every integer i* with $i \geq 1$ *. For any non-negative integer k, there exist unique polynomials of weight* $k, T_k \in \mathbb{Q}[x_1, \dots, x_k]$, such that the following properties hold:

- (1) $T_0 = 1$.
- (2) *For any formal power series* $\sum_{i=0}^{\infty} x_i t^i$, we put

$$
\mathrm{td}_{t}(\sum_{i=0}^{\infty}x_{i}t^{i})=\sum_{k=0}^{\infty}T_{k}(x_{1},\cdots,x_{k})t^{k},
$$

where t is an indeterminate. If

$$
\sum_{i=0}^{\infty} x_i t^i = \left(\sum_{i=0}^{\infty} y_i t^i\right) \left(\sum_{i=0}^{\infty} z_i t^i\right),
$$

then

$$
\operatorname{td}_t(\sum_{i=0}^{\infty} x_i t^i) = \left(\operatorname{td}_t(\sum_{i=0}^{\infty} y_i t^i) \right) \left(\operatorname{td}_t(\sum_{i=0}^{\infty} z_i t^i) \right).
$$

(3) For the linear expression $1 + xt$,

$$
td_t(1+xt) = \frac{xt}{1 - \exp(-xt)}
$$

.

Proof. See [9], Chapter I, §1. □

Definition 2.1 (1) Polynomials $T_k \in \mathbb{Q}[x_1, \dots, x_k]$ in Proposition 2.1 is called the *Todd polynomial of weight k*.

(2) Let *X* be a smooth projective variety and let $\mathcal F$ be a vector bundle on *X*. Let $c_t(\mathcal{F}) = \sum_{i \geq 0} c_i(\mathcal{F}) t^i$ be the Chern polynomial of *F*. We put

$$
\mathrm{td}_{t}(\mathcal{F})=\mathrm{td}(\sum_{i\geq 0}c_{i}(\mathcal{F})t^{i})=\sum_{k=0}^{\infty}T_{k}(c_{1}(\mathcal{F}),\cdots,c_{k}(\mathcal{F}))t^{k},
$$

where *t* is an indeterminate. Furthermore, we put

$$
\mathrm{td}_k(c_1(\mathcal{F}),\cdots,c_k(\mathcal{F})):=T_k(c_1(\mathcal{F}),\cdots,c_k(\mathcal{F})),
$$

and

$$
\mathrm{td}(\mathcal{F}):=\sum_{k=0}^{\infty}\mathrm{td}_k(c_1(\mathcal{F}),\cdots,c_k(\mathcal{F})).
$$

Then $td(\mathcal{F})$ is called the *Todd class of* \mathcal{F} .

Definition 2.2 (1) Let *X* be a smooth projective variety and let $\mathcal F$ be a vector bundle on *X*. Then for every integer *j* with $j \geq 0$, the *j*-th Segre class $s_j(\mathcal{F})$ of $\mathcal F$ is defined by the following equation: $c_t(\mathcal{F}^{\vee})s_t(\mathcal{F}) = 1$, where $\mathcal{F}^{\vee} := Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$, $c_t(\mathcal{F})$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_t(\mathcal{F}) = \sum_{j\geq 0} s_j(\mathcal{F}) t^j$.

(2) Let *X* be a smooth projective variety and let \mathcal{T}_X be the tangent bundle of X. Then we put $c_i(X) := c_i(\mathcal{T}_X)$, where $c_i(\mathcal{T}_X)$ is the *i*-th Chern class of \mathcal{T}_X .

Definition 2.3 (See [8], Definition 2.1.) Let *X* be a smooth projective variety of $\dim X = n$ and let *E* be an ample vector bundle of rank *r* on *X* with $1 \leq r \leq n$. Then for every integer *i* with $0 \leq i \leq n-r$, the *i*-th *c_r*-sectional geometric genus of (X, \mathcal{E}) is defined by the following:

$$
g_i(X, \mathcal{E}) := \sum_{j=0}^{n-r-i} (-1)^{n-r-j} {n-r-i \choose j} \times \sum_{k=0}^{n-r} \left\{ \frac{(-(n-r-i-j)c_1(\mathcal{E}))^{n-r-k}}{(n-r-k)!} \times \sum_{l=0}^k td_l(c_1(X), \dots, c_l(X))td_{k-l}(s_1(\mathcal{E}^\vee), \dots, s_{k-l}(\mathcal{E}^\vee)) \right\} c_r(\mathcal{E}) + (-1)^{i+1} \chi(\mathcal{O}_X) + \sum_{k=0}^{n-i} (-1)^{n-i-k} h^{n-k}(\mathcal{O}_X).
$$

Theorem 2.1 Let *X* be a smooth projective variety of dim $X = n$ and let \mathcal{E} be an *ample vector bundle of* $\text{rank}(\mathcal{E}) = r$ *on X.* (1) *If* 1 ≤ r ≤ $n-1$ *, then*

$$
g_1(X,\mathcal{E}) = 1 + \frac{1}{2}(K_X + (n-r)c_1(\mathcal{E}))c_1(\mathcal{E})^{n-r-1}c_r(\mathcal{E}).
$$

(2) *If* $1 \le r \le n-2$ *, then*

$$
g_2(X,\mathcal{E})
$$

= -1 + h¹(\mathcal{O}_X)
+ $\frac{1}{12}$ (K_X + (n - r)c₁(\mathcal{E}))(K_X + (n - r - 1)c₁(\mathcal{E}))c_r(\mathcal{E})c₁(\mathcal{E})^{n-r-2}
+ $\frac{1}{12}$ (c₂(X) + (K_X + c₁(\mathcal{E}))c₁(\mathcal{E}) - c₂(\mathcal{E}))c_r(\mathcal{E})c₁(\mathcal{E})^{n-r-2}
+ $\frac{n-r-3}{24}$ (2 K_X + (n - r)c₁(\mathcal{E}))c_r(\mathcal{E})c₁(\mathcal{E})^{n-r-1}.

Proof. See [8], Theorem 2.5. \Box

Definition 2.4 Let *X* be a smooth projective variety and let \mathcal{E} be a vector bundle of rank $(\mathcal{E}) = r$ on X.

(1) \mathcal{E} is said to be *ample and spanned* if the tautological line bundle $H(\mathcal{E})$ of $\mathbb{P}_X(\mathcal{E})$ is ample and spanned.

(2) $\mathcal E$ is said to be *very ample* if the tautological line bundle $H(\mathcal E)$ of $\mathbb P_X(\mathcal E)$ is very ample.

Remark 2.1 Let *X* be a smooth projective variety of dim $X = n$ and let \mathcal{E} be an ample vector bundle of rank $(\mathcal{E}) = r$ on X.

(1) Assume that $n-r \geq 1$ and *E* is spanned. Then there exists an element *s* ∈ $H^0(\mathcal{E})$ such that the zero locus of *s* is a submanifold of *X* of dimension $n - r$.

(2) If $\mathcal E$ is very ample, then $\mathcal E$ is ample and spanned.

(3) Let $\mathcal E$ be a very ample (resp. ample and spanned) vector bundle on X and let $\mathcal F$ be a quotient bundle of $\mathcal E$. Then $\mathcal F$ is also very ample (resp. ample and spanned).

Theorem 2.2 Let X be a smooth projective variety of dim $X = n$ and let E be an *ample vector bundle of rank r on X. Assume that* $1 \leq r \leq n-1$ *and* \mathcal{E} *is spanned. Let Z be a zero locus of a general section of* $H^0(\mathcal{E})$ *. Then* $g_i(X, \mathcal{E}) = g_i(Z, c_1(\mathcal{E}|_Z))$ *for every integer i with* $0 \leq i \leq n - r$ *.*

Proof. See [8], Theorem 2.2. \Box

Theorem 2.3 (Lefschetz-Sommese) *Let X be an n-dimensional smooth projective variety, and let* \mathcal{E} *be an ample vector bundle of* $rank(\mathcal{E}) = r \geq 2$ *on* X *such that there exists a section* $s \in \Gamma(\mathcal{E})$ *whose zero locus* $Z = (s)_0$ *is a submanifiold of X of the expected dimension* $n - r$ *. Let* r_q : $H^q(X, \mathbb{Z}) \to H^q(Z, \mathbb{Z})$ *be the restriction homomorphism. Then*

- (1) r_q *is an isomorphism for* $q \leq n r 1$.
- (2) r_q *is injective and its cokernel is torsion free for* $q = n r$ *.*

Proof. See [12], 1.3 Theorem. \Box

Remark 2.2 Let *X*, \mathcal{E} , and *Z* be as in Theorem 2.3. By the Hodge theory, we obtain that $h^q(\mathcal{O}_X) = h^q(\mathcal{O}_Z)$ for every integer *q* with $0 \le q \le n-r-1$, and $h^{n-r}(\mathcal{O}_X) \leq h^{n-r}(\mathcal{O}_Z).$

Theorem 2.4 Let X be a smooth projective variety of dim $X = n$ and let \mathcal{E} be an *ample vector bundle of rank r on X.* Assume that $1 \leq r \leq n$ *and* \mathcal{E} *is spanned. Then* $g_i(X, \mathcal{E}) \geq h^i(\mathcal{O}_X)$ *for* $0 \leq i \leq n-r$.

Proof. See [8], Corollary 2.6. \Box

Theorem 2.5 Let *X* be a smooth projective variety of dim $X = n \geq 3$ and let *E* be *a very ample vector bundle of rank* $r \geq 2$ *on X. Then* $g_2(X, \det(\mathcal{E})) = h^2(\mathcal{O}_X) + 1$ *if and only if* (X, \mathcal{E}) *is one of the following:*

- (1) $(\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(1)^{\oplus 2}).$
- $(2) \ (\mathbb{Q}^4, \mathcal{O}_{\mathbb{Q}^4}(1)^{\oplus 2}).$
- (3) $X \cong \mathbb{P}^3$, and $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 4}$, $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^3}(2)$, $\mathcal{T}_{\mathbb{P}^3}$, $\mathcal{O}_{\mathbb{P}^3}(1) \oplus \mathcal{O}_{\mathbb{P}^3}(3)$, $\mathcal{O}_{\mathbb{P}^3}(2)^{\oplus 2}$,
and $\mathcal{E}(2)$, where $\mathcal{M$ or $\mathcal{N}(2)$, where $\mathcal N$ *is the null-correlation bundle on* \mathbb{P}^3 *.*
- (4) $X \cong \mathbb{Q}^3$, and $\mathcal{E} \cong \mathcal{O}_{\mathbb{Q}^3}(1)^{\oplus 3}, \mathcal{O}_{\mathbb{Q}^3}(1) \oplus \mathcal{O}_{\mathbb{Q}^3}(2)$, or $\mathcal{S}(2)$, where *S* is the Spinor *bundle on* \mathbb{Q}^3 .
- (5) $X \cong \mathbb{P}^2 \times \mathbb{P}^1$, and $\mathcal{E} \cong \mathcal{O}(2,1) \oplus \mathcal{O}(1,1)$ or $p_1^* \mathcal{T}_{\mathbb{P}^2} \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$, where p_i is the *i*^{*-th projection for* $i = 1, 2$ *<i>and* $\mathcal{O}(a, b) := p_1^* \mathcal{O}_{\mathbb{P}^2}(a) \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(b)$ *.*}
- (6) $(X, A^{\oplus 2})$, where (X, A) is a Del Pezzo 3-fold of degree d ($3 \leq d \leq 7$).
- (7) $n = 3$ and there exists a fibration $f: X \to W$ over a smooth elliptic curve W *such that* $(F, \mathcal{E}_F) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2))$ *for every fiber F of f.*
- (8) $n = 3$ and there exists a fibration $f : X \to W$ over a smooth elliptic curve W *such that* $(F, \mathcal{E}_F) \cong (\mathbb{Q}^2, \mathcal{O}_{\mathbb{Q}^2}(1)^{\oplus 2})$ *for a general fiber F of f.*

Proof. See [11]. \Box

3 Main Theorem.

Theorem 3.1 *Let* (X, \mathcal{E}) *be a generalized polarized manifold of* dim $X = n \geq 3$ *and* $\text{rank}(\mathcal{E}) = r \geq 2$ *. Assume that* $n - r \geq 3$ *and* \mathcal{E} *is very ample. If* $g_2(X, \mathcal{E}) =$ $h^2(\mathcal{O}_X) + 1$ *, then* (X, \mathcal{E}) *is one of the following:*

- (a) $(\mathbb{P}^7, \mathcal{O}_{\mathbb{P}^7}(1)^{\oplus 2})$.
- (b) $(\mathbb{P}^7, \mathcal{O}_{\mathbb{P}^7}(1)^{\oplus 4}).$
- (c) $(\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(2) \oplus \mathcal{O}_{\mathbb{P}^5}(1)).$
- (d) $(\mathbb{Q}^6, \mathcal{O}_{\mathbb{Q}^6}(1)^{\oplus 3})$.
- (e) $(\mathbb{Q}^6, \mathcal{O}_{\mathbb{Q}^6}(1)^{\oplus 2})$.
- (f) *X is a* 5*-dimensional Fano manifold of index* 4 *and* $r = 2$ *. Moreover* Pic(*X*) \cong $\mathbb{Z} \cdot H$ and $\mathcal{E}_l \cong H_l^{\oplus 2}$ for every line *l* of (X, H) .
- (g) There exists a surjective morphism $f: X \to W$ over a smooth elliptic curve W *such that a general fiber of f is a smooth hyperquadric* \mathbb{Q}^4 *with* $\mathcal{E}|_F \cong \mathcal{O}_{\mathbb{Q}^4}(1)^{\oplus 2}$.
- (h) *There exists a surjective morphism* $f: X \to W$ *over a smooth elliptic curve W* such that a general fiber F of f is $\mathbb{P}_{\mathbb{P}^1}(\mathcal{G})$ for some vector bundle G of rank 4 *on* \mathbb{P}^1 *and* $\mathcal{E}|_F = \bigoplus_{j=1}^2 (H(\mathcal{G}) + \pi^*\mathcal{O}_{\mathbb{P}^1}(b_j))$ *, where* $H(\mathcal{G})$ *is the tautological line bundle of* \mathcal{G} *and* π : $F \to \mathbb{P}^1$ *is the bundle projection.*

Proof. By assumption, there exists a section $s \in H^0(\mathcal{E})$ such that the zero locus $Z := (s)_0$ is a smooth projective variety of dim $Z = n - r \geq 3$. Then by Theorem 2.2 and Theorem 2.3 we get that

$$
g_2(Z, c_1(\mathcal{E}|_Z)) = g_2(X, \mathcal{E})
$$

= $h^2(\mathcal{O}_X) + 1$
= $h^2(\mathcal{O}_Z) + 1$.

Here we note that dim $Z \geq 3$ by assumption. Hence by Theorem 2.5, $(Z, \mathcal{E}|_Z)$ is one of the following:

- (I) $(\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(1)^{\oplus 2}).$
- $(II) \; (\mathbb{Q}^4, \mathcal{O}_{\mathbb{Q}^4}(1)^{\oplus 2}).$
- (III) $Z \cong \mathbb{P}^3$, and $\mathcal{E}|_Z \cong \mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 4}$, $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^3}(2)$, $\mathcal{T}_{\mathbb{P}^3}$, $\mathcal{O}_{\mathbb{P}^3}(1) \oplus \mathcal{O}_{\mathbb{P}^3}(3)$,
 $\mathcal{O}_{\mathbb{P}^3}(3)^{\oplus 2}$ or $\mathcal{N}(3)$, where \mathcal $\mathcal{O}_{\mathbb{P}^3}(2)^{\oplus 2}$, or $\mathcal{N}(2)$, where $\mathcal N$ is the null-correlation bundle on \mathbb{P}^3 .
- (IV) $Z \cong \mathbb{Q}^3$, and $\mathcal{E}|_Z \cong \mathcal{O}_{\mathbb{Q}^3}(1)^{\oplus 3}, \mathcal{O}_{\mathbb{Q}^3}(1) \oplus \mathcal{O}_{\mathbb{Q}^3}(2)$, or $\mathcal{S}(2)$, where \mathcal{S} is the Spinor bundle on \mathbb{Q}^3 .
- (V) $Z \cong \mathbb{P}^2 \times \mathbb{P}^1$, and $\mathcal{E}|_Z \cong \mathcal{O}(2,1) \oplus \mathcal{O}(1,1)$ or $p_1^* \mathcal{T}_{\mathbb{P}^2} \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$, where p_i is the *i*-th projection for $i = 1, 2$ and $\mathcal{O}(a, b) := p_1^* \mathcal{O}_{\mathbb{P}^2}(a) \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(b)$.
- (VI) $(Z, A^{\oplus 2})$, where (Z, A) is a Del Pezzo 3-fold of degree d ($3 \leq d \leq 7$).
- (VII) $n r = 3$ and there exists a fibration $h: Z \to W$ over a smooth elliptic curve *W* such that $(F_h, \mathcal{E}_{F_h}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2))$ for every fiber F_h of *h*.
- (VIII) $n r = 3$ and there exists a fibration $h : Z \to W$ over a smooth elliptic curve *W* such that $(F_h, \mathcal{E}_{F_h}) \cong (\mathbb{Q}^2, \mathcal{O}_{\mathbb{Q}^2}(1)^{\oplus 2})$ for a general fiber F_h of *h*.

(A) Assume that $Z \cong \mathbb{P}^{n-r}$. Then $(Z, \mathcal{E}|_Z)$ is either (I) or (III). Then by [12], Theorem A, we get that $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus r})$ since $n - r \geq 3$. We note that $h^2(\mathcal{O}_X) = 0$. We also note the following:

$$
K_X = \mathcal{O}_{\mathbb{P}^n}(-(n+1)),
$$

\n
$$
c_2(X) = {n+1 \choose 2} \mathcal{O}_{\mathbb{P}^n}(1)^2,
$$

\n
$$
c_1(\mathcal{E}) = r \mathcal{O}_{\mathbb{P}^n}(1),
$$

\n
$$
c_2(\mathcal{E}) = {r \choose 2} \mathcal{O}_{\mathbb{P}^n}(1)^2,
$$

\n
$$
c_r(\mathcal{E}) = \mathcal{O}_{\mathbb{P}^n}(1)^r.
$$

If $(Z, \mathcal{E}|_Z)$ is the case (I) (resp. (III)), then $n - r = 5$ (resp. 3). Here we calculate $q_2(X,\mathcal{E})$ in this case.

Assume that $(Z, \mathcal{E}|_Z)$ is the case (III). In this case $n - r = 3$ and $n \geq 5$. Then by Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{12}(n-3)(2n^2 - 24n + 76).
$$

Since $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1 = 1$, we obtain that $n = 7$ and $r = 4$. Namely $(X,\mathcal{E}) \cong (\mathbb{P}^7,\mathcal{O}(1)^{\oplus 4})$. This is the type (b) in Theorem 3.1.

Assume that $(Z, \mathcal{E}|_Z)$ is the case (I). In this case $n - r = 5$ and $n \ge 7$. Then by Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{4}(n-5)^3(5n^2 - 68n + 232).
$$

Since $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1 = 1$, we obtain that $n = 7$ and $r = 2$. Namely $(X, \mathcal{E}) \cong (\mathbb{P}^7, \mathcal{O}_{\mathbb{P}^7}(1)^{\oplus 2})$. This is the type (a) in Theorem 3.1.

(D) Assume that $Z \cong \mathbb{O}^{n-r}$. Then (Z, \mathcal{E}) is either (I) or (I)

(B) Assume that $Z \cong \mathbb{Q}^{n-r}$. Then $(Z, \mathcal{E}|_Z)$ is either (II) or (IV). Then by [12], Theorem B, we get that $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(2) \oplus \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus r-1})$ or

 $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)^{\oplus r})$ since $n - r \geq 3$. We note that $h^2(\mathcal{O}_X) = 0$.

If $(Z, \mathcal{E}|_Z)$ is the case (IV) (resp. (II)), then $n - r = 3$ (resp. 4). Here we calculate $g_2(X, \mathcal{E})$ in this case.

Assume that $(X, \mathcal{E}) = (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(2) \oplus \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus r-1})$. We also note the following:

$$
K_X = \mathcal{O}_{\mathbb{P}^n}(-(n+1)),
$$

\n
$$
c_2(X) = {n+1 \choose 2} \mathcal{O}_{\mathbb{P}^n}(1)^2,
$$

\n
$$
c_1(\mathcal{E}) = (r+1)\mathcal{O}_{\mathbb{P}^n}(1),
$$

\n
$$
c_2(\mathcal{E}) = (2(r-1) + {r-1 \choose 2}) \mathcal{O}_{\mathbb{P}^n}(1)^2,
$$

\n
$$
c_r(\mathcal{E}) = 2\mathcal{O}_{\mathbb{P}^n}(1)^r.
$$

If $(Z, \mathcal{E}|_Z)$ is the case (IV), then $n - r = 3$ and $n \ge 5$. By Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{6}(n-2)(2n^2 - 17n + 39).
$$

Since $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1 = 1$, we obtain that $n = 5$ and $r = 2$. Namely $(X, \mathcal{E}) \cong (\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(2) \oplus \mathcal{O}_{\mathbb{P}^5}(1)).$ This is the type (c) in Theorem 3.1.

If $(Z, \mathcal{E}|_Z)$ is the case (II), then $n - r = 4$ and $n \ge 6$. By Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{6}(n-3)^2 (7n^2 - 66n + 158).
$$

But in this case $g_2(X, \mathcal{E}) \neq h^2(\mathcal{O}_X) + 1$.

Assume that $(X, \mathcal{E}) = (\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)^{\oplus r})$. We also note the following:

$$
K_X = \mathcal{O}_{\mathbb{Q}^n}(-n),
$$

\n
$$
c_2(X) = \left(\binom{n+2}{2} - 2n\right) \mathcal{O}_{\mathbb{Q}^n}(1)^2,
$$

\n
$$
c_1(\mathcal{E}) = r\mathcal{O}_{\mathbb{Q}^n}(1),
$$

\n
$$
c_2(\mathcal{E}) = \binom{r}{2} \mathcal{O}_{\mathbb{Q}^n}(1)^2,
$$

\n
$$
c_r(\mathcal{E}) = \mathcal{O}_{\mathbb{Q}^n}(1)^r.
$$

If $(Z, \mathcal{E}|_Z)$ is the case (IV), then $n - r = 3$ and $n \geq 5$. By Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{6}(n-3)(2n^2 - 21n + 58).
$$

Since $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1 = 1$, we obtain that $n = 6$ and $r = 3$. Namely $(X, \mathcal{E}) \cong (\mathbb{Q}^6, \mathcal{O}_{\mathbb{Q}^6}(1)^{\oplus 3})$. This is the type (d) in Theorem 3.1.

If $(Z, \mathcal{E}|_Z)$ is the case (II), then $n - r = 4$ and $n \geq 6$. By Theorem 2.1 (2)

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{6}(n-4)^2(7n^2 - 80n + 231).
$$

Since $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1 = 1$, we obtain that $n = 6$ and $r = 2$. Namely $(X, \mathcal{E}) \cong (\mathbb{Q}^6, \mathcal{O}_{\mathbb{Q}^6}(1)^{\oplus 2})$. This is the type (e) in Theorem 3.1.
(*C*) Aggures that $Z \cong \mathbb{P}^2 \times \mathbb{P}^1$. Then by Theorem 3.2. *Hi*(

(C) Assume that $Z \cong \mathbb{P}^2 \times \mathbb{P}^1$. Then by Theorem 2.3, $H^i(X,\mathbb{Z}) \cong H^i(Z,\mathbb{Z})$ for $i = 1, 2$. By the Hodge theory, we obtain that $h^{i}(\mathcal{O}_{X}) = h^{i}(\mathcal{O}_{Z})$ for $i = 1, 2$. Hence $\rho: Pic(X) \to Pic(Z)$ is an isomorphism by the following commutative diagram:

$$
H^{1}(X, \mathbb{Z}) \longrightarrow H^{1}(\mathcal{O}_{X}) \longrightarrow Pic(X) \longrightarrow H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}(\mathcal{O}_{X})
$$
\n
$$
\downarrow \qquad \qquad \rho \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
H^{1}(Z, \mathbb{Z}) \longrightarrow H^{1}(\mathcal{O}_{Z}) \longrightarrow Pic(Z) \longrightarrow H^{2}(Z, \mathbb{Z}) \longrightarrow H^{2}(\mathcal{O}_{Z})
$$

We take $p_1^* \mathcal{O}_{\mathbb{P}^2}(1) \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1) \in \text{Pic}(Z)$, where p_i is the *i*-th projection for $i = 1, 2$. Then there exists $H \in \text{Pic}(X)$ such that $H|_Z = p_1^* \mathcal{O}_{\mathbb{P}^2}(1) \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$. Then by considering the second projection $p_2 : Z \to \mathbb{P}^1$, we obtain that $(Z, H|_Z)$ is a scroll over \mathbb{P}^1 . Hence by [13] Theorem B, (X, H) is a scroll over \mathbb{P}^1 such that $\mathcal{E}|_F \cong$ $\mathcal{O}_{\mathbb{P}^{n-1}}(1)^{\oplus r}$ for every fiber *F* of $f: X \to \mathbb{P}^1$ and $f|_Z = p_2$. In particular $\mathcal{E}|_{F_Z}$ is split, where F_Z is a fiber of $p_2: Z \to \mathbb{P}^1$. On the other hand since $\mathcal{E}|_Z \cong \mathcal{O}(2,1) \oplus \mathcal{O}(1,1)$ or $p_1^* T_{\mathbb{P}^2} \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$, we obtain that $r = 2$, and $\mathcal{E}|_{F_Z} \cong \mathcal{O}_{\mathbb{P}^2}(2) \oplus \mathcal{O}_{\mathbb{P}^2}(1)$ or $T_{\mathbb{P}^2}$. Since $\mathcal{E}|_{F_Z}$ is split, we get that $\mathcal{E}|_{F_Z} \cong \mathcal{O}_{\mathbb{P}^2}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$. But since $\mathcal{E}|_F \cong \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{\oplus 2}$, this is a contradiction. Hence this case cannot occur.

(D) Assume that $(Z, \mathcal{E}|_Z) \cong (Z, A^{\oplus 2})$, where (Z, A) is a Del Pezzo 3-fold of degree *d*, where *d* is an integer with $3 \le d \le 7$.

In this case $n - r = 3$ and $r = 2$. Namely $n = 5$ and $r = 2$.

- (D.1) If $\rho(Z) = 1$, then by [12], 2.5 Proposition, we get the following:
- $(D.1.1)$ $X = \mathbb{P}^5$ and $\mathcal{E} = \mathcal{O}_{\mathbb{P}^5}(3) \oplus \mathcal{O}_{\mathbb{P}^5}(1)$ or \mathcal{E} has the generic splitting type $(2, 2)$.
- $(D.1.2)$ $X = \mathbb{Q}^5$ and $\mathcal{E}_l = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$ for every line $l \subset \mathbb{Q}^5$.
- (D.1.3) *X* is a 5-dimensional Fano manifold of index 4 and $r = 2$. Moreover Pic(*X*) \cong $\mathbb{Z} \cdot H$ and $\mathcal{E}_l \cong H_l^{\oplus 2}$ for every line *l* of (X, H) .

Claim 3.1 *The cases* (D.1.1) *and* (D.1.2) *are impossible.*

Proof. By [12], 2.4, we get that $Pic(X) \cong Pic(Z)$, *A* is the ample generator of $Pic(Z)$, and $H_Z = A$, where *H* is the ample generator of $Pic(X)$.

First we assume that (X, \mathcal{E}) is the case (D.1.1). Then $c_1(\mathcal{E}) = \mathcal{O}_{\mathbb{P}^5}(4)$. On the other hand $c_1(\mathcal{E}) = 2\mathcal{O}_{\mathbb{P}^5}(1)$ because $c_1(\mathcal{E}|_Z) = 2A$. But this is a contradiction.

Next we assume that (X, \mathcal{E}) is the case (D.1.2). Then since $c_1(\mathcal{E}|_Z) = 2A$, we obtain that $c_1(\mathcal{E}) = 2\mathcal{O}_{\mathbb{Q}^5}(1)$. We put $\mathcal{O}_{\mathbb{P}^1}(a) := \mathcal{O}_{\mathbb{Q}^5}(1)|_l$ for a line $l \subset \mathbb{Q}^5$. Then $c_1(\mathcal{E})|_l = \mathcal{O}_{\mathbb{P}^1}(2a)$. On the other hand $c_1(\mathcal{E})|_l = \mathcal{O}_{\mathbb{P}^1}(3)$ by assumption of (D.1.2). Hence $2a = 3$. But this is impossible because $a \in \mathbb{Z}$. This completes the proof of Claim $3.1. \Box$

If (X, \mathcal{E}) is the case (D.1.3), then we get the type (f) in Theorem 3.1. (D.2) If $\rho(Z) \geq 2$, then by [3], Theorem 1, we obtain the following: There exist a smooth projective surface S and an ample vector bundle $\mathcal F$ of rank 4 on *S* such that $X = \mathbb{P}_S(\mathcal{F})$, where

$$
S \cong \begin{cases} \mathbb{P}^1 \times \mathbb{P}^1 & \text{if } Z \cong \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \\ \mathbb{P}^2 & \text{otherwise.} \end{cases}
$$

Moreover $\mathcal{E} = H(\mathcal{F}) \otimes f^*(\mathcal{G})$, where $H(\mathcal{F})$ is the tautological line bundle of \mathcal{F} on *X*, $f: X \to S$ is the bundle projection and *G*, a vector bundle of rank 2 on *S*, is the dual of the kernel of the vector bundle surjection $\mathcal{F} \to \mathcal{B}$ corresponding to the fiberwise inclusion of $Z = \mathbb{P}_S(\mathcal{B})$ into X.

Claim 3.2 $\mathcal{E} = (H(\mathcal{F}) \otimes f^*(B))^{\oplus 2}$ for some line bundle $B \in \text{Pic}(S)$.

Proof. First we note that $f|_Z = p$ and $H(\mathcal{F})|_Z = H(\mathcal{B})$. Since $\mathcal{E} = H(\mathcal{F}) \otimes f^*(\mathcal{G})$, we get that $\mathcal{E}|_Z = H(\mathcal{F})|_Z \otimes (f^*(\mathcal{G}))_Z \cong H(\mathcal{B}) \otimes p^*(\mathcal{G}),$ where $p: Z = \mathbb{P}_S(\mathcal{B}) \to S$ is the projection. Hence $c_1(\mathcal{E}|_Z) = 2H(\mathcal{B}) + c_1(p^*(\mathcal{G}))$. Therefore $A_Z = H(\mathcal{B}) \otimes p^*(B)$ for some $B \in \text{Pic}(S)$. Since $\mathcal{E}_Z = A_Z \oplus A_Z$, we obtain that $p^*(\mathcal{G}) = (H(\mathcal{B})^{-1} \otimes A_Z)^{\oplus 2} =$ $(p^*(B))^{\oplus 2}$. Therefore $\mathcal{G} \cong B \oplus B$ and $\mathcal{E} = H(\mathcal{F}) \otimes f^*(\mathcal{G}) = (H(\mathcal{F}) \otimes f^*(B))^{\oplus 2}$. This completes the proof of Claim 3.2. \Box

Next we give the formula of $g_2(X, \mathcal{E})$. We note the following:

$$
K_X = -4H(\mathcal{F}) + f^*(K_S + c_1(\mathcal{F})),
$$

\n
$$
c_2(X) = c_2(f^*T_S) + c_1(f^*\mathcal{F}^\vee \otimes H(\mathcal{F}))c_1(f^*T_S) + c_2(f^*\mathcal{F}^\vee \otimes H(\mathcal{F})),
$$

\n
$$
c_1(\mathcal{E}) = 2H(\mathcal{F}) + 2f^*(B),
$$

\n
$$
c_2(\mathcal{E}) = (H(\mathcal{F}) + f^*(B))^2.
$$

By Theorem 2.1 (2), we get that following:

(1)
\n
$$
g_2(X, \mathcal{E})
$$
\n
$$
= -1 + h^1(\mathcal{O}_X) + \frac{1}{12} \left\{ 2(K_S + c_1(\mathcal{F}))^2 + 48(K_S + c_1(\mathcal{F}))B + 96B^2 + 8(K_S + c_1(\mathcal{F}))c_1(\mathcal{F}) - 4c_1(\mathcal{F})^2 + 2c_2(S) + 6c_1(S)c_1(\mathcal{F}) + 24c_1(S)B \right\}.
$$

Here we note that $h^1(\mathcal{O}_X) = 0$ in this case.

Claim 3.3 *Assume that* $S \cong \mathbb{P}^2$. *Then this case cannot occur.*

Proof. We put $c_1(\mathcal{F}) = \mathcal{O}_{\mathbb{P}^2}(f)$ and $B = \mathcal{O}_{\mathbb{P}^2}(b)$, where f and b are integers. Then by (1) above,

$$
g_2(X,\mathcal{E}) = -1 + \frac{1}{2}(f^2 + 8fb + 16b^2 - 3f - 12b + 4).
$$

If $g_2(X,\mathcal{E}) = h^2(\mathcal{O}_X) + 1$, then $f^2 + 8fb + 16b^2 - 3f - 12b = 0$. Namely $(f + 4b)(f +$ $4b-3$ = 0. Hence $f + 4b = 0$ or $f + 4b = 3$.

Since $\mathcal E$ is ample, $H(\mathcal F) \otimes f^*(B)$ is also ample by Claim 3.2. We put $\mathcal H :=$ $f_*(H(\mathcal{F}) \otimes f^*(B))$. Then $X \cong \mathbb{P}_{\mathbb{P}^2}(\mathcal{H})$ and $H(\mathcal{H}) = H(\mathcal{F}) \otimes f^*(B)$.

Since $H(\mathcal{F}) \otimes f^*(B)$ is ample, so is $H(\mathcal{H})$. Hence $\mathcal H$ is ample. Here we note that $\mathcal{H} = f_*(H(\mathcal{F}) \otimes f^*(B)) = \mathcal{F} \otimes B$. Then $c_1(\mathcal{H}) = c_1(\mathcal{F}) + 4B = \mathcal{O}_{\mathbb{P}^2}(f + 4b)$. Since *H* is ample, $f + 4b > 0$ and we obtain that $f + 4b = 3$.

Let *l* be a line in \mathbb{P}^2 . Then $c_1(\mathcal{H})l = f + 4b = 3$. But since rank $(\mathcal{H}) = 4$ and *l* \cong \mathbb{P}^1 , we obtain that *c*₁(*H*)*l* ≥ 4, and this is a contradiction. This completes the proof of Claim 3.3. \Box

Next we consider the case where $S \cong \mathbb{P}^1 \times \mathbb{P}^1$.

Claim 3.4 *Assume that* $S \cong \mathbb{P}^1 \times \mathbb{P}^1$. *Then this case cannot occur.*

Proof. First we note that for any member $D \in Pic(\mathbb{P}^1 \times \mathbb{P}^1)$, we can write $D =$ $p_1^*({\cal O}(a)) \otimes p_2^*({\cal O}(b))$ for some integers *a* and *b*, where $p_i : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ is the *i*-th projection. We put $\mathcal{O}(a, b) := p_1^*(\mathcal{O}(a)) \otimes p_2^*(\mathcal{O}(b))$. We also note that $c_1(\mathcal{B}) =$ $\mathcal{O}(2t_1, 2t_2)$ for some integers t_1 and t_2 because $K_Z = -2H(\mathcal{B}) + (f|_Z)^*(K_{\mathbb{P}^1 \times \mathbb{P}^1} +$ $c_1(\mathcal{B})$, $K_{\mathbb{P}^1 \times \mathbb{P}^1} = \mathcal{O}(-2, -2)$, and $K_Z = 2D$ for some $D \in \text{Pic}(Z)$. Since $(Z, H(\mathcal{B}) \otimes$ $(f|_Z)^*(B)$ is a Del Pezzo manifold, we obtain that $2(H(\mathcal{B}) + (f|_Z)^*(B)) = -K_Z =$

 $2H(\mathcal{B}) + (f|_Z)^*(\mathcal{O}(2-2t_1, 2-2t_2)$. We put $B = \mathcal{O}(b_1, b_2)$. Then we get that $t_i + b_i = 1$ for $i = 1, 2$. On the other hand, by the following exact sequence

$$
0 \to \mathcal{G}^{\vee} \to \mathcal{F} \to \mathcal{B} \to 0,
$$

we obtain that $c_1(\mathcal{F}) = c_1(\mathcal{G}^{\vee}) + c_1(\mathcal{B})$. Hence $c_1(\mathcal{F}) = \mathcal{O}(2t_1 - 2b_1, 2t_2 - 2b_2)$ because $\mathcal{G} \cong \mathcal{B} \oplus \mathcal{B}$. Since $t_i + b_i = 1$ for $i = 1, 2$, we obtain that

(2)
$$
c_1(\mathcal{F}) = \mathcal{O}(2 - 4b_1, 2 - 4b_2).
$$

Since $\mathcal F$ is ample, $b_1 \leq 0$ and $b_2 \leq 0$ are obtained. Next we calculate $g_2(X, \mathcal{E})$ by using b_1 and b_2 . We note that

$$
(3) \t K_S = \mathcal{O}(-2,-2)
$$

$$
(4) \t\t\t c_2(S) = 4.
$$

By (1), (2), (3), and (4), we obtain that $g_2(X, \mathcal{E}) = 1 - 4b_1 - 4b_2$. Since $g_2(X, \mathcal{E}) =$ $h^2(\mathcal{O}_X) + 1 = 1$, we get that $b_1 = b_2 = 0$ and $c_1(\mathcal{F}) = \mathcal{O}(2, 2)$. Let *F*['] be a fiber of the first projection $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$. Then $c_1(\mathcal{F})F' = 2$. But since $\mathcal F$ is ample, rank $(F) = 4$, and $F' \cong \mathbb{P}^1$, we obtain that $c_1(F)F' \geq 4$. This is a contradiction. This completes the proof of Claim 3.4. \Box

(E) Assume that $n - r = 3$ and there exists a fibration $h: Z \to W$ over a smooth elliptic curve *W* such that $(F_h, \mathcal{E}|_{F_h}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2))$ for every fiber F_h of *h* or $(F_h, \mathcal{E}|_{F_h}) \cong (\mathbb{Q}^2, \mathcal{O}_{\mathbb{Q}^2}(1)^{\oplus 2})$ for a general fiber F_h of *h*.

In this case, we have $n = 5$ and $r = 2$.

Claim 3.5 *Let* $\alpha: X \to \alpha(X)$ *be the Albanese map of X. Then* $\alpha(X)$ *is a smooth elliptic curve,* $W \cong \alpha(X)$ *, and* $h = \alpha|_Z$ *.*

Proof. Since $h^1(\mathcal{O}_X) = h^1(\mathcal{O}_Z) = 1$, we obtain that $\alpha(X) = \text{Alb}(X)$ and $\alpha(X)$ is a smooth elliptic curve. (Here $\text{Alb}(X)$ denotes the Albanese variety of X.) Let $\alpha|_Z : Z \to \alpha(X)$. Then $\alpha|_Z$ is surjective. Here we note that $h : Z \to W$ is a surjective morphism with connected fibers such that a general fiber F_h is \mathbb{P}^2 or \mathbb{Q}^2 . Hence $\alpha|_Z(F_h)$ is a point. Therefore by [2], Lemma 4.1.13, there exists a surjective morphism $\delta: W \to \alpha(X)$ such that $\alpha|_Z = \delta \circ h$. But since *h* has connected fibers, δ is an isomorphism. \Box

Let F_h (resp. F_α) be a general fiber of *h* (resp. α). Since $K_{F_h} + c_1(\mathcal{E}|_{F_h}) = \mathcal{O}_{F_h}$, $h = \alpha|_Z$, and $Z \cap F_\alpha = F_h$, we obtain that

$$
[\star] \quad ((K_X+2c_1(\mathcal{E}))|_{F_{\alpha}})|_{F_h} \cong ((K_X+2c_1(\mathcal{E}))|_{Z})|_{F_{\alpha}} \cong (K_Z+c_1(\mathcal{E}|_{Z}))|_{F_h} \cong \mathcal{O}_{F_h}.
$$

Here we note that since Z is the zero locus of a general member of $H^0(\mathcal{E})$, a general fiber F_h of $h: Z \to W$ is the zero locus of a general member of $H^0(\mathcal{E}|_{F_\alpha})$ by Claim 3.5.

(E.1) If $F_h = \mathbb{P}^2$, then by [12], Theorem A, we get that $(F_\alpha, \mathcal{E}|_{F_\alpha}) \cong (\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus 2})$. In particular, $(K_X + 2c_1(\mathcal{E}))|_{F_\alpha} \cong \mathcal{O}_{\mathbb{P}^4}(-1)$. But by $[\star]$, this is impossible.
 (F, Ω) Assume that $(F, \mathcal{E}|_{\alpha}) \cong (\mathbb{Q}^2 \otimes (10^{2}) \otimes F_{\alpha}$. [19] Theorem B. (*F*

(E.2) Assume that $(F_h, \mathcal{E}|_{F_h}) \cong (\mathbb{Q}^2, \mathcal{O}_{\mathbb{Q}^2}(1)^{\oplus 2})$. By [12], Theorem B, $(F_\alpha, \mathcal{E}|_{F_\alpha})$ is one of the following:

- $(F.2.1)$ $(F_{\alpha}, \mathcal{E}|_{F_{\alpha}}) \cong (\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2) \oplus \mathcal{O}_{\mathbb{P}^4}(1)).$
- $(F.2.2)$ $(F_{\alpha}, \mathcal{E}|_{F_{\alpha}}) \cong (\mathbb{Q}^4, \mathcal{O}_{\mathbb{Q}^4}(1)^{\oplus 2}).$
- (E.2.3) $F_{\alpha} = \mathbb{P}_{\mathbb{P}^1}(\mathcal{G})$ for some vector bundle \mathcal{G} of rank 4 on \mathbb{P}^1 and $\mathcal{E}|_{F_{\alpha}} = \bigoplus_{j=1}^2 (H(\mathcal{G}) +$ $\pi^* \mathcal{O}_{\mathbb{P}^1}(b_j)$, where $H(\mathcal{G})$ is the tautological line bundle of \mathcal{G} and $\pi: F_\alpha \to \mathbb{P}^1$ is the bundle projection.

If $(F_{\alpha}, \mathcal{E}|_{F_{\alpha}})$ is the case (E.2.1), then $(K_X + 2c_1(\mathcal{E}))|_{F_{\alpha}} \cong \mathcal{O}_{\mathbb{P}^4}(1)$, and this is impossible by [*⋆*].

By putting $f := \alpha$, the case (E.2.2) (resp. (E.2.3)) is the type (g) (resp. (h)) in Theorem 3.1.

These complete the proof of Theorem 3.1. \Box

Example 3.1 Here we will give an example of the case (f) in Theorem 3.1.

Let (X, H) be a 5-dimensional Fano manifold of index 4 with $H^5 \geq 3$ and let $\mathcal{E} = H^{\oplus 2}$. Then $\mathcal E$ is a very ample vector bundle of rank 2 and

$$
c_1(\mathcal{E}) = 2H,
$$

$$
c_2(\mathcal{E}) = H^2.
$$

On the other hand

$$
K_X = -4H,
$$

$$
c_2(X)H^3 = 12 + 5H^5.
$$

Hence by the definition of the second *cr*-sectional geometric genus, we obtain that $g_2(X, \mathcal{E}) = 1 = h^2(\mathcal{O}_X) + 1.$

Problem 3.1 *Does there exist a very ample vector bundle* \mathcal{E} *of* rank $(\mathcal{E}) = 2$ *on a Fano* 5-fold *X* of index 4 such that $\mathcal E$ is not split and $g_2(X, \mathcal E) = h^2(\mathcal O_X) + 1$?

Example 3.2 Here we consider the case (g) in Theorem 3.1.

Let (X, L) be a hyperquadric fibration over a smooth elliptic curve C . Let $f: X \to C$ be its morphism. We put $\mathcal{F} := f_*(L)$. Then \mathcal{F} is a locally free sheaf of rank $(F) = n + 1$, where $n = \dim X$. In this case there exists an embedding $\iota: X \to \mathbb{P}_C(\mathcal{F})$ such that $f = \pi \circ \iota$ and $X \in |2H(\mathcal{F}) + \pi^*(D)|$, where $\pi: \mathbb{P}_C(\mathcal{F}) \to C$ is the projection, $H(\mathcal{F})$ is the tautological line bundle of $\mathbb{P}_{C}(\mathcal{F})$, and $D \in Pic(C)$. Here we assume that $n = 5$ and we put $\mathcal{E} := L \oplus L$. Then \mathcal{E} is an ample vector bundle of rank $(\mathcal{E}) = 2$ on X.

Next we calculate $g_2(X, \mathcal{E})$. We note the following:

$$
H(\mathcal{F})|_X = L
$$

\n
$$
c_1(\mathcal{E}) = 2L
$$

\n
$$
c_2(\mathcal{E}) = L^2
$$

\n
$$
K_X = -4L + f^*(c_1(\mathcal{F}) + D)
$$

\n
$$
c_2(X) = 7L^2 - 3Lf^*(c_1(\mathcal{F})) - 2Lf^*(D).
$$

We put $b = \deg D$ and $e = \deg \mathcal{F}$. By Theorem 2.1 (2) and the above equalities, we obtain that $g_2(X, \mathcal{E}) = b + e$. On the other hand the sectional genus of (X, L) $g_1(X, L) = 1 + b + e$ (see [4]). By [4], Example 3.9 and Example 3.11, there exists a hyperquadric fibration (X, L) over a smooth elliptic curve C with dim $X = 5$ such that $(b, e, L^5) = (1, 0, 1)$ or $(0, 1, 2)$. In these cases $g_2(X, \mathcal{E}) = 1 = h^2(\mathcal{O}_X) + 1$.

But we note that $\mathcal E$ is not very ample in each case. First we can prove that L is not very ample. (If *L* is very ample, then $X \cong \mathbb{P}^5$ or \mathbb{Q}^5 because $L^5 = 1$ or 2. But this is impossible because $Pic(X) \cong \mathbb{Z}$ in each case.) Therefore $\mathcal E$ is not very ample because $\mathcal{E} \to L$ is surjective. (See Remark 2.1 (3).)

The existence of the case (h) in Theorem 3.1 is uncertain at present.

References

- [1] E. Ballico, *On vector bundles on* 3*-folds with sectional genus* 1*,* Trans. Amer. Math. Soc. 324 (1991), 135–147.
- [2] M. C. Beltrametti and A. J. Sommese, *The adjunction theory of complex projective varieties,* de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, NewYork, (1995).
- [3] T. de Fernex and A. Lanteri, *Ample vector bundles and Del Pezzo manifolds,* Kodai Math. J. 22 (1999), 83–98.
- [4] T. Fujita, *Classification of polarized manifolds of sectional genus two,* the Proceedings of "Algebraic Geometry and Commutative Algebra" in Honor of Masayoshi Nagata, 1987, 73–98.
- [5] T. Fujita, *Classification Theories of Polarized Varieties,* London Math. Soc. Lecture Note Series 155 (1990).
- [6] Y. Fukuma, *On the sectional geometric genus of quasi-polarized varieties, I,* Comm. Alg. 32 (2004), 1069–1100.
- [7] Y. Fukuma, *On the sectional geometric genus of quasi-polarized varieties, II* Manuscripta Math. 113 (2004), 211–237.
- [8] Y. Fukuma, *On the cr-sectional geometric genus of generalized polarized manifolds,* Japan. J. Math. 29 (2003), 335–355.
- [9] Hirzebruch, F., *Topological methods in algebraic geometry,* Grundlehren Math. Wiss. 131, Springer-Verlag, New York, (1966).
- [10] H. Ishihara, *A generalization of curve genus for ample vector bundles, I,* Comm. Alg. 27 (1999), 4327–4335.
- [11] H. Ishihara, *Sectional geometric genera for ample vector bundles, II,* preprint.
- [12] A. Lanteri and H. Maeda, *Ample vector bundles with sections vanishing on projective spaces or quadrics,* Int. J. Math. 6 (1995), 587–600.
- [13] A. Lanteri and H. Maeda, *Ample vector bundle characterizations of projective bundles and quadric fibrations over curves,* Higher Dimensional Complex Varieties; Proc. Internat. Conf. Trento, June 1994, (M. Andreatta, Th. Peternell eds.), de Gruyter, (1996), 249–259.
- [14] A. J. Sommese, *On the adjunction theoretic structure of projective varieties,* Proc. Complex Analysis and Algbraic Geometry Conf. 1985, Lecture Notes in Math., 1194, Springer-Verlag, New York, 1986, 175-213.

Yoshiaki Fukuma Department of Mathematics Faculty of Science Kochi University Akebono-cho, Kochi 780-8520 Japan E-mail: fukuma@math.kochi-u.ac.jp