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Abstract

Let X be an n-dimensional smooth projective variety defined over the field of complex
numbers, let E F1, F2 and G be ample vector bundles with rank(E) = r ≤ n, rank(F1) =
rank(F2) = r + 1 and rank(G) = r + 2. In this paper, we will define the generalized sectional
class cln,r(X, E ;F1,F2;G), and we will investigate this invariant for some special cases. In
particular, for every integer i with 0 ≤ i ≤ n − 1, by setting E := L⊕n−i, F1 := L⊕n−i+1,
F2 := L⊕n−i+1 and G := L⊕n−i+2, we give a classification of polarized manifolds (X, L) by
the value of cli(X, L) := cln,n−i(X, E ;F1,F2;G).

1 Introduction

Let X be a smooth projective variety of dimension n defined over the field of complex numbers,
and let L be an ample line bundle on X. Then (X,L) is called a polarized manifold. Assume that
L is very ample and let ϕ : X ↪→ PN be the morphism defined by |L|. Then ϕ is an embedding. In
this situation, its dual variety X∨ → (PN )∨ is a hypersurface of N -dimensional projective space
except some special types. Then the class cl(X,L) of (X,L) is defined by the following.

cl(X,L) =
{

deg(X∨), if X∨ is a hypersurface in (PN )∨

0, otherwise.

A lot of investigations by using cl(X,L) have been obtained (for example [22], [26], [34], [23], [27],
[25], [1], [31] and so on). In this paper, we are going to define a generalization of this invariant.
Let X be a smooth projective variety of dimension n and let E , F1, F2 and G be ample (not
necessarily very ample) vector bundles on X with rank(E) = r, rank(F1) = rank(F2) = r + 1
and rank(G) = r + 2 such that r ≤ n. Then in Section 3 we will define the generalized sectional
class cln,r(X, E ;F1,F2;G) of (X, E ,F1,F2,G) (see Definition 3.4), and for future works we will
study some fundamental properties concerning this invariants. Our main purpose is to study this
invariant in general. But in this paper, as the first step, we consider the following case: Let L be
an ample (not necessarily very ample) line bundle on X and we set E := L⊕n−i, F1 := L⊕n−i+1,
F2 := L⊕n−i+1 and G := L⊕n−i+2, where i is an integer with 0 ≤ i ≤ n. We note that rank(E) =
n − i. Then we will define

cli(X,L) := cln,n−i (X, E ;F1,F2;G)
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We will call this invariant the ith sectional class of (X,L). In this paper, we mainly study this
invariant cli(X,L) for the case where L is not necessarily very ample and will get some results
about cli(X,L).

Here we note the following: Assume that L is very ample. Then there exists a member Xj ∈
|Lj−1| such that each Xj is a smooth projective manifold of dimension n − j and Lj := Lj−1|Xj

for every j with 1 ≤ j ≤ n − i. In this case, we see that cli(X,L) is the class of the i dimensional
polarized manifold (Xn−i, Ln−i). In particular, if i = n, then cln(X,L) is equal to the class cl(X,L)
of (X,L) if L is very ample.

As we said above, there are a lot of works about the class cl(X,L) for very ample line bundles
L, that is, the case where i = n and L is very ample.

Classifications of (X,L) concerning cli(X,L) are known for the following cases.

• The case where i = n ≤ 3 and L is very ample (see [22], [26], [23]).

• The case where i = 2, n ≥ 2 and L is very ample (see [34], [27], [25]).

• The case where i = n = 2 and L is ample (see [31]).

In this paper, we give classifications of (X,L) by the value of cli(X,L) for the following cases.

• The case where i = 1, n ≥ 3, cl1(X,L) ≤ 4 and L is ample.

• The case where i = 2, n ≥ 3, cl2(X,L) ≤ 16 and L is ample and spanned.

• The case where i = 3, n ≥ 3, cl3(X,L) ≤ 8 and L is ample and spanned.

• The case where i = 4, n ≥ 5, cl4(X,L) ≤ 1 (resp. cl4(X,L) = 2) and L is ample and spanned
(resp. very ample).

Moreover in this paper we also give some interesting problems (see Problems 3.1 and 4.1, and
Conjecture 4.1).

In Section 4, we calculate cli(X,L) for some special cases. The results in Section 4 will be
used in order to classify (X,L) by the value of cli(X,L). In Sections 5, 6, 7 and 8 we obtain the
classification of (X,L) by the value of cl1(X,L), cl2(X,L), cl3(X,L) and cl4(X,L).

We are planning of studying a classification of (X, E ,F1,F2,G) by the value of cln,r(X, E ;F1,F2;G)
in a future paper.

The content of this paper includes the content of the paper entitled “Sectional class of ample
line bundles on smooth projective varieties”, which was cited in [16].

2 Preliminaries

Definition 2.1 Let (X,L) be a polarized manifold of dimension n.

(1) We say that (X,L) is a scroll (resp. quadric fibration) over a normal projective variety Y
of dimension m with 1 ≤ m < n if there exists a surjective morphism with connected fibers
f : X → Y such that KX + (n − m + 1)L = f∗A (resp. KX + (n − m)L = f∗A) for some
ample line bundle A on Y .

(2) (X,L) is called a hyperquadric fibration over a smooth curve C if (X,L) is a quadric fibration
over C and the morphism f : X → C is the contraction morphism of an extremal ray. In
this case, h2(X, C) = 2, (F,LF ) ∼= (Qn−1,OQn−1(1)) for any general fiber F of f , and any
fiber of f is irreducible and reduced.
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Notation 2.1 (1) Let (X,L) be a hyperquadric fibration over a smooth curve C. We put
E := f∗(L). Then E is a locally free sheaf of rank n + 1 on C. Let π : PC(E) → C be the
projective bundle. Then X ∈ |2H(E) + π∗(B)| for some B ∈ Pic(C) and L = H(E)|X , where
H(E) is the tautological line bundle of PC(E). We put e := deg E and b := deg B.

(2) (See [7, (13.10) Chapter II].) Let (M,A) be a P2-bundle over a smooth curve C and A|F =
OP2(2) for any fiber F of it. Let f : M → C be the fibration and E := f∗(KM + 2A). Then
E is a locally free sheaf of rank 3 on C, and M ∼= PC(E) such that H(E) = KM + 2A. In this
case, A = 2H(E) + f∗(B) for a line bundle B on C, and by the canonical bundle formula
KM = −3H(E) + f∗(KC + detE). Here we set e := deg E and b := deg B.

Definition 2.2 Let F be a vector bundle on a smooth projective variety X. Then for every integer
j with j ≥ 0, the jth Segre class sj(F) of F is defined by the following equation: ct(F∨)st(F) = 1,
where F∨ := HomOX (F ,OX), ct(F∨) is the Chern polynomial of F∨ and st(F) =

∑
j≥0 sj(F)tj .

Remark 2.1 (a) Let F be a vector bundle on a smooth projective variety X. Let s̃j(F) be the
jth Segre class which is defined in [20, Chapter 3]. Then sj(F) = s̃j(F∨).
(b) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)

Definition 2.3 Let L1, . . . , Lm be ample line bundles on a smooth projective variety X. Then
(X,L1, . . . , Lm) is called a multi-polarized manifold of type m.

Theorem 2.1 Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume that L is spanned.
If b2(X,L) = h2(X, C) + 1, then (X,L) is one of the following types.

(a) (Qn,OQn(1)).

(b) (P3,OP3(2)).

(c) A simple blowing up of (X,L) of type (b).

(d) (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)), where pi is the ith projection.

(e) (PS(E),H(E)), where S is a smooth projective surface and E is an ample vector bundle of
rank two on S with c2(E) = 2. In particular (S, E) is one of the following.

(e.1) (P2,OP2(1) ⊕OP2(2)).

(e.2) (Q2,OQ2(1) ⊕OQ2(1)).

(e.3) (PC(F), π∗(G)⊗H(F)), where C is an elliptic curve, F and G are indecomposable vector
bundles of rank two on C with degF = 1 and deg G = 1, and π : PC(F) → C is the
projection map.

(e.4) S is a double covering f : S → P2 of P2 and E ∼= f∗(OP2(1)) ⊕ f∗(OP2(1)).

Proof. See [18, Theorem 3.1].

3 Definition and fundamental results

In this section, we will give the definition of the generalized sectional class cln,r(X, E ;F1,F2;G)
for ample vector bundles E , F1, F2 and G on X with rank E = r ≤ dimX, rank F1 = r + 1,
rank F2 = r + 1 and rank G = r + 2. Moreover we will give some fundamental results.
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Definition 3.1 (See also [16, Definition 2.1.3].) Let X be a smooth projective variety of dimension
n and let E be a vector bundle on X. Let r be the rank of E . Assume that r ≤ n. For every integer
j with 0 ≤ j ≤ n − r we set

Cn,r
j (X, E) :=

j∑
k=0

ck(X)sj−k(E∨).

Definition 3.2 (See also [16, Definitions 3.1.1 and 3.2.1].) Let (X, E) be a generalized polarized
manifold of dimension n with 1 ≤ rank E = r ≤ n. (Here we use notation in Definition 3.1.) Then
the ith cr-sectional Euler number en,r(X, E) of (X, E) and the cr-sectional Betti number bn,r(X, E)
of (X, E) are defined by the following.

en,r(X, E) := Cn,r
n−r(X, E)cr(E)

bn,r(X, E) :=

{
(−1)n−r

(
en,r(X, E) −

∑n−r−1
j=0 2(−1)jhj(X, C)

)
, if r < n,

en,n(X, E), if r = n.

Remark 3.1 If n − r is odd, then en,r(X, E) is even.
Proof. First we note that r < n because n− r is odd. Then by the definition of bn,r(X, E), we

have

en,r(X, E) = 2
n−r−1∑

j=0

(−1)jhj(X, C) + (−1)n−rbn,r(X, E).

On the other hand, since n − r is odd, bn−r(X, E) is even by [16, Theorem 4.1]. Hence en,r(X, E)
is even.

Definition 3.3 ([16, Definition 5.1.1]) Let (X,L1, . . . , Ln−i) be a multi-polarized manifold of di-
mension n, where i is an integer with 0 ≤ i ≤ n−1. Then we define the ith sectional Euler number
ei(X,L1, . . . , Ln−i) and the ith sectional Betti number bi(X,L1, . . . , Ln−i) are defined as follows.

ei(X,L1, . . . , Ln−i) := en,n−i(X,L1 ⊕ · · · ⊕ Ln−i),
bi(X,L1, . . . , Ln−i) := bn,n−i(X,L1 ⊕ · · · ⊕ Ln−i).

Proposition 3.1 Let i be an integer with 0 ≤ i ≤ n − 1 and let (X,L1, . . . , Ln−i) be a multi-
polarized manifold of type n − i. Assume that a line bundle L is ample and Lk = L for every
integer k with 1 ≤ k ≤ n − i. Then we have

ei(X,L1, . . . , Ln−i) = ei(X,L), bi(X,L1, . . . , Ln−i) = bi(X,L).

Here ei(X,L) (resp. bi(X,L)) is the ith sectional Euler number (resp. the ith sectional Betti
number) which was defined in [13, Definition 3.1 (1) and (2)].

Proof. See [16, Proposition 5.2.1].

Definition 3.4 Let X be a smooth projective variety of dimension n. Let E , F1, F2 and G be
ample vector bundles on X with rank E = r, rank F1 = r +1, rank F2 = r +1 and rank G = r +2.
Assume that r ≤ n. Then the generalized sectional class cln,r(X, E ;F1,F2;G) is defined by the
following.

cln,r(X, E ;F1,F2;G)

:=

 (−1)n−r{en,r(X, E) − en,r+1(X,F1) − en,r+1(X,F2) + en,r+2(X,G)}, if r ≤ n − 2.
−en,n−1(X, E) + en,n(X,F1) + en,n(X,F2), if r = n − 1.
en,n(X, E), if r = n.
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Remark 3.2 If n−r is odd and F1 = F2 = F , then by Remark 3.1 we see that cln,r(X, E ;F ,F ;G)
is even.

Here we will consider a special case.

Definition 3.5 Let X be a smooth projective variety of dimension n ≥ 1. Let i be an integer
with 0 ≤ i ≤ n. Let L1, . . . , Ln−i, A1, A2 be ample line bundles on X.
Then the ith sectional class of (X,L1, . . . , Ln−i;A1, A2) is defined by the following:

cli(X,L1, . . . , Ln−i;A1, A2)

:=


cln,n−i(X,L1 ⊕ · · · ⊕ Ln−i;L1 ⊕ · · · ⊕ Ln−i ⊕ A1,

L1 ⊕ · · · ⊕ Ln−i ⊕ A2;L1 ⊕ · · · ⊕ Ln−i ⊕ A1 ⊕ A2), if 0 ≤ i ≤ n − 1.
(−1)n {e(X) − en−1(X,A1) − en−1(X,A2) + en−2(X,A1, A2)} , if i = n ≥ 2.
−e(X) + deg A1 + deg A2, if i = n = 1.

Remark 3.3 (1) Assume that 0 ≤ i ≤ n− 1. By Definition 3.4 and [16, Definition 5.1.1] we have

cli(X,L1, . . . , Ln−i;A1, A2)

:=


e0(X,L1, . . . , Ln), if i = 0,
(−1){e1(X,L1, . . . , Ln−1) − e0(X,L1, . . . , Ln−i, A1)

−e0(X,L1, . . . , Ln−i, A2)}, if i = 1,
(−1)i{ei(X,L1, . . . , Ln−i) − ei−1(X,L1, . . . , Ln−i, A1)

−ei−1(X,L1, . . . , Ln−i, A2) + ei−2(X,L1, . . . , Ln−i, A1, A2)}, if 2 ≤ i ≤ n − 1.

(2) If i is odd and A1 = A2 = A, then by Remark 3.2 we see that cli(X,L1, . . . , Ln−i;A,A) is even.
(3) If i = 0, then cl0(X,L1, . . . , Ln;A1, A2) = L1 · · ·Ln.

Definition 3.6 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n. Then the ith sectional class of (X,L) is defined by the following:

cli(X,L) := cli(X,L, . . . , L︸ ︷︷ ︸
n−i

;L,L).

Proposition 3.2 Let (X,L) be a polarized manifold of dimension n. For any integer i with 0 ≤
i ≤ n, the following holds.

cli(X,L) =
i∑

t=0

(−1)i−t

(
n − i + t + 1

t

)
ci−t(X)Ln−i+t.

Proof. By the definition of the ith sectional Euler number ei(X,L) of (X,L) (see [13, Definition
3.1 (1)]), we have

ei(X,L) =
i∑

l=0

(−1)l

(
n − i + l − 1

l

)
ci−l(X)Ln−i+l.

Hence we get

cli(X,L)

= (−1)i

(
i∑

l=0

(−1)l

(
n − i + l − 1

l

)
ci−l(X)Ln−i+l − 2

i−1∑
l=0

(−1)l

(
n − i + l

l

)
ci−1−l(X)Ln−i+l+1

+
i−2∑
l=0

(−1)l

(
n − i + l + 1

l

)
ci−2−l(X)Ln−i+l+2

)
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= (−1)i

(
i∑

l=2

(−1)l

{(
n − i + l − 1

l

)
+ 2

(
n − i + l − 1

l − 1

)
+

(
n − i + l − 1

l − 2

)}
ci−l(X)Ln−i+l

+ci(X)Ln−i − (n − i)ci−1(X)Ln−i+1 − 2ci−1(X)Ln−i+1
)

= (−1)i

(
i∑

l=2

(−1)l

(
n − i + l + 1

l

)
ci−l(X)Ln−i+l − (n − i + 2)ci−1(X)Ln−i+1 + ci(X)Ln−i

)

= (−1)i

(
i∑

l=0

(−1)l

(
n − i + l + 1

l

)
ci−l(X)Ln−i+l

)
.

Therefore we get the assertion.

Remark 3.4 (i) By [2, Lemma 1.6.4] we have cli(X,L) = ci(J1(L))Ln−i, where J1(L) is the
first jet bundle of L.

(ii) Assume that L is very ample. Then there exists a sequence of smooth subvarieties X ⊃ X1 ⊃
· · · ⊃ Xn−i such that Xj ∈ |Lj−1| and dimXj = n− j for every integer j with 1 ≤ j ≤ n− i,
where Lj = Lj−1|Xj . In particular, Xn−i is a smooth projective variety of dimension i and
Lj is a very ample line bundle on Xj . Then cli(X,L) is equal to the class of (Xn−i, Ln−i).

Remark 3.5 ([21, II-1]) Let X be an n-dimensional smooth projective variety and let L be a very
ample line bundle on X. Let X ↪→ PN be the embedding defined by |L|. For every integer i with
0 ≤ i ≤ n, Severi defined the notion of the ith rank ri(X) of X as follows.

ri(X) =
∫

Li(L∨)N−1−i(CX).

Here CX denotes the conormal variety, X∨ denotes the dual variety of X and L∨ = OX∨(1). Then
we see that ri(X) = cln−i(X,L) (see [21, (6) Theorem in II]). We also note that if i = 0, then
r0(X) = cln(X,L) is called the class of X.

Definition 3.7 Let X be a smooth projective variety of dimension n, and let φ : X ↪→ PN be an
embedding. Assume that X is non-degenerate in PN . Let X∨ ⊂ (PN )∨ be the dual variety of X.
Then we set

def(X,φ) := codim(PN )∨X∨ − 1.

codeg(X,φ) := deg X∨.

Next we will give a generalization of these numbers. First we note the following proposition.

Proposition 3.3 Let (X,L) be a polarized manifold of dimension n. Assume that L is very ample.
Let φL : X ↪→ PN be the embedding defined by L. Then

def(X,φL) = min{ i | 0 ≤ i ≤ n, cln−i(X,L) ̸= 0}
codeg(X,φL) = cln−def(X,φL)(X,L).

Proof. By [3, (0.3.1) Lemma and (0.3.2) Remark] and Remark 3.4 (i), we get the assertion.

Definition 3.8 Let X be a smooth projective variety of dimension n, and let L, A1 and A2 ample
line bundles on X.

(i) The deficiency of (X,L;A1, A2) is defined by the following.

def(X,L;A1, A2) := min{ i | 0 ≤ i ≤ n, cln−i(X,L, . . . , L;A1, A2) ̸= 0}
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(ii) The codegree of (X,L;A1, A2) is defined by the following.

codeg(X,L;A1, A2) := cln−k(X,L, . . . , L;A1, A2),

where k = def(X,L;A1, A2).

(iii) If A1 = A2 = L, then

def(X,L) := def(X,L;L,L)
codeg(X,L) := codeg(X,L;L,L).

Here we note that the following holds if L is very ample.

Proposition 3.4 Let X be a smooth projective variety of dimension n, and let L be a very ample
line bundle on X. Let φL : X ↪→ PN be the embedding defined by L. Then def(X,L) = def(X,φL)
and codeg(X,L) = codeg(X,φL).

Proof. By Proposition 3.3, we have def(X,φL) = min{ i | 0 ≤ i ≤ n, cln−i(X,L) ̸= 0}. Hence

def(X,L) = def(X,L;L, L) = min{ i | 0 ≤ i ≤ n, cln−i(X,L, . . . , L;L,L) ̸= 0}
= min{ i | 0 ≤ i ≤ n, cln−i(X,L) ̸= 0}
= def(X,φL)

Therefore we get the first assertion.
By Definition 3.8 and Proposition 3.3, we have

codeg(X,L) = codeg(X,L;L,L)
= cl

n−def(X,L;L,L)
(X,L, . . . , L;L,L)

= cln−def(X,L)(X,L)

= cln−def(X,φL)(X,L)

= codeg(X,φL).

So we get the second assertion.

When L is very ample, the following shows that we can calculate codeg(X,L) by using the
sectional Euler numbers.

Proposition 3.5 Let X be a smooth projective variety of dimension n, and let L be a very ample
line bundle on X. Then the following equality holds.

codeg(X,L) = (−1)n−k ((k + 1)en(X,L) − (k + 2)en−1(X,L) + en−k−2(X,L)) ,

where k = def(X,L).

Proof. By Proposition 3.4 we have codeg(X,L) = codeg(X,φL). On the other hand, by [32,
Proposition 2] or [33, Theorem 10.6] we see

codeg(X,φL) = (−1)n−k ((k + 1)e(X) − (k + 2)e(X1) + e(Xk+2)) ,

where k = def(X,L) and we use notation in Remark 3.4 (ii). Since en(X,L) = e(X), en−1(X,L) =
e(X1) and en−k−2(X,L) = e(Xk+2), we get the assertion.

Problem 3.1 Does the equality in Proposition 3.5 hold for any ample line bundle L?
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Next we will prove the following which is useful in order to classify (X,L) by the value of
cln,r(X, E ;F1,F2;G) (see also [21, (18) Lemma in II]).

Proposition 3.6 Let X be a smooth projective variety of dimension n and let i be an integer. Let
E, F1, F2 and G be ample vector bundles on X with rank E = r, rank F1 = r +1, rank F2 = r +1
and rank G = r + 2. Assume that 1 ≤ r ≤ n. Then the following holds.

cln,r(X, E ;F1,F2;G)

:=



bn,r(X, E) − bn−r−2(X) + bn,r+1(X,F1) − bn−r−1(X)
+bn,r+1(X,F2) − bn−r−1(X) + bn,r+2(X,G) − bn−r−2(X), if 1 ≤ r ≤ n − 2,

bn,n−1(X, E) + bn,n(X,F1) − b0(X) + bn,n(X,F2) − b0(X), if r = n − 1,

bn,n(X, E), if r = n.

Proof. Here we note the following.

en,r(X, E) = 2
n−r−1∑

j=0

(−1)jbj(X) + (−1)n−rbn,r(X, E), (1)

en,r+1(X,Fk) = 2
n−r−2∑

j=0

(−1)jbj(X) + (−1)n−r−1bn,r+1(X,Fk) (2)

en,r+2(X,G) = 2
n−r−3∑

j=0

(−1)jbj(X) + (−1)n−r−2bn,r+2(X,G). (3)

Since

(−1)i

2
i−1∑
j=0

(−1)jbj(X) − 4
i−2∑
j=0

(−1)jbj(X) + 2
i−3∑
j=0

(−1)jbj(X)


= (−1)i

(
(−1)i−12bi−1(X) + (−1)i−22bi−2(X) − (−1)i−24bi−2(X)

)
= −2bi−1(X) − 2bi−2(X),

we get the assertion by substituting the above three equations (1), (2) and (3) for the formula in
Definition 3.4.

Corollary 3.1 Let X be a smooth projective variety of dimension n and let i be an integer with
0 ≤ i ≤ n − 1. Let L1, . . . , Ln−i, A1, A2 be ample line bundles on X. Then the following holds.

cli(X,L1, . . . , Ln−i;A1, A2)

:=



b0(X,L1, . . . , Ln), if i = 0,

b1(X,L1, . . . , Ln−1) + b0(X,L1, . . . , Ln, A1) − b0(X)
+b0(X,L1, . . . , Ln, A2) − b0(X), if i = 1,

bi(X,L1, . . . , Ln−i) − bi−2(X) + bi−1(X,L1, . . . , Ln−i, A1) − bi−1(X)
+bi−1(X,L1, . . . , Ln−i, A2) − bi−1(X)
+bi−2(X,L1, . . . , Ln−i, A1, A2) − bi−2(X), if 2 ≤ i ≤ n − 1.

Proof. By setting E = L1 ⊕ · · · ⊕Ln−i, F1 = L1 ⊕ · · · ⊕Ln−i ⊕A1, F2 = L1 ⊕ · · · ⊕Ln−i ⊕A2

and G = L1 ⊕ · · · ⊕ Ln−i ⊕ A1 ⊕ A2, we get the assertion from Proposition 3.6.

Next we study the non-negativity of the generalized sectional class.
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Theorem 3.1 Let X be a smooth projective variety of dimension n and let i be an integer with
0 ≤ i ≤ n − 1. Let E, F1, F2 and G be ample and spanned vector vector bundles on X with
rank E = r, rank F1 = r + 1, rank F2 = r + 1 and rank G = r + 2.
(i) Assume that r ≤ n − 1. Then cln,r(X, E ;F1,F2;G) ≥ 0.
(ii) Assume that r = n. Then cln,n(X, E) > 0.

Proof. (i) First we assume that r ≤ n − 2. Then by Proposition 3.6, we get

cln,r(X, E ;F1,F2;G) = bn,r(X, E) − bn−r−2(X) + bn,r+1(X,F1) − bn−r−1(X)
+bn,r+1(X,F2) − bn−r−1(X) + bn,r+2(X,G) − bn−r−2(X).

Since E ,F1,F2,G are ample and spanned, by [16, Proposition 4.1] we have

bn,r(X, E) ≥ bn−r(X)
bn,r+1(X,Fk) ≥ bn−r−1(X)
bn,r+2(X,G) ≥ bn−r−2(X).

On the other hand, we obtain bn−r(X) ≥ bn−r−2(X) by the hard Lefschetz theorem [28, Corollary
3.1.40]. Therefore we get the assertion.

Next we assume that r = n − 1. Then by definition we have cln,n−1(X, E ;F1,F2;G) = (KX +
c1(E))cn−1(E) + cn(F1) + cn(F2). Since (KX + c1(E))cn−1(E) ≥ −2 by [29, Theorem 1], and the
ampleness of Fk implies cn(Fk) ≥ 1, we have cln,n−1(X, E ;A1, A2) ≥ 0.

(ii) Assume that r = n. Then cln,n(X, E) = cn(E) > 0 since E is ample. Therefore we get the
assertion.

Remark 3.6 We do not need the assumption that E , F1 and F2 are spanned when we consider
the case where r = n − 1 or n.

By Definition 3.6 and Theorem 3.1 the following holds.

Corollary 3.2 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n − 1. Assume that L is base point free. Then cli(X,L) ≥ 0.

Next we consider the value of the sectional class of a reduction of multi-polarized manifolds.

Definition 3.9 Let k be a positive integer.

(1) Let (X,L1, · · · , Lk) and (Y,H1, · · · ,Hk) be n-dimensional multi-polarized manifolds of type k.
Then (X,L1, · · · , Lk) is called a simple blowing up of a multi-polarized manifold (Y,H1, · · · ,Hk)
of type k if there exists a blowing up π : X → Y at a point y ∈ Y such that Lj = π∗(Hj)−E
and E|E ∼= OPn−1(−1) for every integer j with 1 ≤ j ≤ k, where E ∼= Pn−1 is the exceptional
effective divisor.

(2) A multi-polarized manifold (X̃, L̃1, · · · , L̃k) of type k is called a reduction of (X,L1, · · · , Lk)
if there exists a birational morphism π : X → X̃ such that π is a composite of simple blowing
ups and (X̃, L̃1, · · · , L̃k) is not a simple blowing up of another multi-polarized manifold of
type k. This π is called the reduction map.

Proposition 3.7 Let (X,L1, · · · , Ln−i) be a multi-polarized manifold of type n−i with dimX = n,
where i is an integer with 0 ≤ i ≤ n − 1. Let (Y,H1, · · · ,Hn−i) be a multi-polarized manifold of
type n − i such that (X,L1, · · · , Ln−i) is a composite of simple blowing ups of (Y,H1, · · · ,Hn−i)
and let γ be the number of its simple blowing ups. Then

ei(X,L1, · · · , Ln−i) = ei(Y,H1, · · · ,Hn−i) + (i − 1)γ,

e(X) = e(Y ) + (n − 1)γ.
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Proof. See [16, Proposition 5.3.1] and its proof.

Proposition 3.8 Let (X,L1, · · · , Ln−i, A1, A2) be a multi-polarized manifold of type n− i+2 with
dimX = n, where i is an integer with 0 ≤ i ≤ n − 1. Let (Y,H1, · · · , Hn−i, B1, B2) be a multi-
polarized manifold of type n − i + 2 such that (X,L1, · · · , Ln−i, A1, A2) is a composite of simple
blowing ups of (Y,H1, · · · , Hn−i, B1, B2) and let γ be the number of its simple blowing ups. Then

cli(X,L1, . . . , Ln−i;A1, A2)

:=

 cl0(Y,H1, . . . ,Hn;B1, B2) − γ, if i = 0,
cl1(Y,H1, . . . ,Hn−1;B1, B2) − 2γ, if i = 1,
cli(Y,H1, . . . ,Hn−i;B1, B2), if 2 ≤ i ≤ n − 1 or i = n ≥ 2.

Proof. By Definition 3.5, Remark 3.3 and Proposition 3.7, we get the assertion.

Corollary 3.3 Let (X,L) be a polarized manifold of dimension n ≥ 2 and let (Y,H) be a polarized
manifold such that (X,L) is a composite of simple blowing ups of (Y,H) and let γ be the number
of its simple blowing ups. Then for every integer i with 0 ≤ i ≤ n − 1, we have

cli(X,L) :=

 cl0(Y,H) − γ, if i = 0,
cl1(Y,H) − 2γ, if i = 1,
cli(Y,H), if 2 ≤ i ≤ n − 1 or i = n ≥ 2.

Proof. By putting L1 := L, · · · , Ln−i := L, A1 := L, A2 := L, H1 := H, · · · ,Hn−i := H,
B1 := H and B2 := H, we get the assertion by Proposition 3.8.

4 Calculations on the sectional class of some special polar-
ized manifolds

Here we are going to calculate the ith sectional class cli(X,L) of some special polarized manifolds
(X,L) with n = dimX ≥ 3 by using its ith sectional Euler number ei(X,L). By Remark 3.3 (1)
and Definitions 3.5 and 3.6, we have

cli(X,L) :=

 e0(X,L), if i = 0,
(−1){e1(X,L) − 2e0(X,L)}, if i = 1,
(−1)i{ei(X,L) − 2ei−1(X,L) + ei−2(X,L)}, if 2 ≤ i ≤ n − 1.

Example 4.1 (i) The case where (X,L) is (Pn,OPn(1)).
Then by [17, Example 3.1] we have

cli(X,L) =
{

1, if i = 0,
0, if i ≥ 1.

(ii) The case where (X,L) is (Qn,OQn(1)).
Then by [17, Example 3.2] we have cli(X,L) = 2 for 0 ≤ i ≤ n. In this case, def(X,L) = 0 and
codeg(X,L) = 2.
(iii) The case where (X,L) is (P4,OP4(2)).
Then by [17, Example 3.3] we have

cli(X,L) =


16, if i = 0,
40, if i = 1,
40, if i = 2,
20, if i = 3,
5, if i = 4.
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In this case, def(X,L) = 0 and codeg(X,L) = 5.
(iv) The case where (X,L) is (Q3,OQ3(2)).
Then by [17, Example 3.4] we have

cli(X,L) =


16, if i = 0,
40, if i = 1,
40, if i = 2,
20, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 20.
(v) The case where (X,L) is (P3,OP3(3)).
Then by [17, Example 3.5] we have

cli(X,L) =


27, if i = 0,
72, if i = 1,
72, if i = 2,
32, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 32.
(vi) The case where (X,L) is a Veronese fibration over a smooth curve C.
Here we use Notation 2.1 (2). Then by [17, Example 3.6] we have

cli(X,L) =


8e + 12b, if i = 0,
20e + 28b, if i = 1,
36e + 47b, if i = 2,
41e + 52b, if i = 3.

First we note that

8e + 12b = L3 (4)
2g(C) − 2 + e + 2b = 0 (5)
g(X,L) = 1 + 2e + 2b (6)

Here we set L3 = 4m. Then m is an integer with m ≥ 1. We see from (4) and (5) that b =
4(1 − g(C)) − m and e = 6(g(C) − 1) + 2m. Therefore

cl1(X,L) = 20e + 28b = 12m + 8(g(C) − 1) > 0.

Next we consider cl2(X,L). Then

cl2(X,L) = 36e + 47b = 25m + 28(g(C) − 1).

If g(C) = 0 and m = 1, then we have e = −4 and b = 3. But then by (6) we have g(X,L) = −1 < 0
and this is impossible. Hence g(C) ≥ 1 or m ≥ 2, and we get

cl2(X,L) ≥ 25m + 28(g(C) − 1) ≥ 22.

Finally we consider cl3(X,L). Then

cl3(X,L) = 41e + 52b = 30m + 38(g(C) − 1).

By the same argument as above, the case where g(C) = 0 and m = 1 does not occur. Hence
g(C) ≥ 1 or m ≥ 2, and we get

cl3(X,L) ≥ 30m + 38(g(C) − 1) ≥ 22.

Therefore def(X,L) = 0 and codeg(X,L) = 30m + 38(g(C) − 1).
(vii) The case where (X,L) is a Del Pezzo manifold with n = dim X ≥ 3.
Here we note that by [7, (8.11) Theorem], we have Ln ≤ 8 and (X,L) is one of the following:
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(vii.1) (X,L) ∼= (P3,OP3(2)).
Then by [17, Example 3.7 (3.7.1)] we have

cli(X,L) =


8, if i = 0,
16, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.2) X is the blowing up of P3 at a point and L = π∗(OP3(2)) − E, where π : X → P3 is its
birational morphism and E is the exceptional divisor. Then by [17, Example 3.7 (3.7.2)] we
have

cli(X,L) =


7, if i = 0,
14, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.3) (X,L) is either

(P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)), (P2 × P2,⊗2

i=1p
∗
iOP2(1)) or (PP2(TP2),H(TP2))

where pi is the ith projection and TP2 is the tangent bundle of P2.

(vii.3.1) The case where (X,L) ∼= (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)).

Then by [17, Example 3.7 (3.7.3.1)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.3.2) The case where (X,L) ∼= (P2 × P2,⊗2
i=1p

∗
iOP2(1)).

Then by [17, Example 3.7 (3.7.3.2)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
6, if i = 3,
3, if i = 4.

In this case, def(X,L) = 0 and codeg(X,L) = 3.

(vii.3.3) The case where (X,L) ∼= (PP2(TP2),H(TP2)).
Then by [17, Example 3.7 (3.7.3.3)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
6, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 6.
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(vii.4) The case where (X,L) is a linear section of the Grassmann variety Gr(5, 2) parametrizing
lines in P4, embedded in P9 via the Plücker embedding. Then 3 ≤ n ≤ 6 and Ln = 5.

By [17, Example 3.7 (3.7.4)] we have

cli(X,L) =



5, if i = 0,
10, if i = 1,
12, if i = 2,
10, if i = 3,
5, if i = 4 and 4 ≤ n ≤ 6,
0, if i = 5 and 5 ≤ n ≤ 6,
0, if i = 6 and n = 6.

In this case, if n = 6 (resp. 5, 4, 3), then def(X,L) = 2 (resp. 1, 0, 0) and codeg(X,L) = 5
(resp. 5, 5, 10).

(vii.5) The case where (X,L) is a complete intersection of two hyperquadrics in Pn+2.

Then by [17, Example 3.7 (3.7.5)] we have

cli(X,L) = 4i + 4.

In this case, def(X,L) = 0 and codeg(X,L) = 4n + 4.

(vii.6) The case where X is a hypercubic in Pn+1 and L = OX(1).

Then by [17, Example 3.7 (3.7.6)] we have

cli(X,L) = 3 · 2i.

In this case, def(X,L) = 0 and codeg(X,L) = 3 · 2n.

In general, the following holds by Definitions 3.5, 3.6 and [17, Lemma 3.3] (see also [21, (9)
Proposition in II]).

Proposition 4.1 If X is a hypersurface of degree m in Pn+1, then

cli(X,L) = m(m − 1)i, def(X,L) = 0 and codeg(X,L) = m(m − 1)n.

(vii.7) The case where X is a double covering of Pn branched along a smooth hypersurface of degree
4, and L is the pull-back of OPn(1).

Then by [17, Example 3.7 (3.7.7)] we have

cli(X,L) =
{

2, if i = 0,
4 · 3i−1, if i ≥ 1.

In this case, def(X,L) = 0 and codeg(X,L) = 4 · 3n−1.

In general, we can prove the following by using [17, Lemma 3.4].

Proposition 4.2 If X is a double covering of Pn branched along a smooth hypersurface of
degree m, and L is the pull back of OPn(1), then for i ≥ 1 we have

cli(X,L) = m(m − 1)i−1, def(X,L) = 0 and codeg(X,L) = m(m − 1)n−1.
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(vii.8) The case where (X,L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3, 2, 1, . . . , 1).

Then by [17, Example 3.7 (3.7.8)] we have

cli(X,L) =

 1, if i = 0,
2, if i = 1,
12 · 5i−2, if i ≥ 2.

In this case, def(X,L) = 0 and codeg(X,L) = 12 · 5n−2.

(viii) The case where (X,L) is a hyperquadric fibration over a smooth curve C.
Here we use notation in Notation 2.1 (1). Then by [17, Example 3.8] we have

cli(X,L) =

 2e + b, if i = 0,
6e + 4b + 4(g(C) − 1), if i = 1,
8e + 4ib + 4(g(C) − 1), if i ≥ 2.

Here we consider a lower bound of cli(X,L) for i ≥ 1.

Proposition 4.3 Let (X,L) be a hyperquadric fibration over a smooth curve C. If i ≥ 1, then
cli(X,L) ≥ 4.

Proof. Then we use the following inequalities.

2e + b > 0 (7)
2e + (n + 1)b ≥ 0 (8)

(A) First we consider the case i = 1. Then g(X,L) ≥ 2 holds because (X,L) is a hyperquadric
fibration over a smooth curve. Hence by definition we have cl1(X,L) = 2(g(X,L) + Ln − 1) ≥ 4.
(B) Next we consider the case i ≥ 2.
(B.1) If b < 0, then by (8) we have

2e + ib = 2e + (n + 1)b − (n + 1 − i)b (9)
≥ −(n + 1 − i)b
≥ n + 1 − i.

Hence

cli(X,L) = 8e + 4ib + 4(g(C) − 1)
= 4(2e + ib) + 4(g(C) − 1)
≥ 4(n + 1 − i) + 4(g(C) − 1)
= 4(n − i) + 4g(C)
≥ 0.

If cli(X,L) = 0, then i = n and g(C) = 0. Then by (8) we have 0 = cli(X,L) = 4(2e + (n +
1)b)− 4b− 4 ≥ −4b− 4 ≥ 0 and we get 2e + (n + 1)b = 0 and b = −1. Since g(C) = 0, we see that
E can be expressed as

E =
n⊕

i=0

O(ei).
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We may assume that e0 ≤ · · · ≤ en. Since b = −1, we see that e0 ≥ 1 by the same argument as in
the proof of [5, Lemma (3.19)]. Hence

e =
n∑

i=0

ei ≥ n + 1.

But this is impossible because

e = − (n + 1)
2

b =
(n + 1)

2
.

Hence cli(X,L) > 0 in this case.
(B.2) If b ≥ 0, then by (7) we have 2e + ib = 2e + b + (i − 1)b ≥ 1 + (i − 1)b. Hence

cli(X,L) = 8e + 4ib + 4(g(C) − 1)
≥ 4(i − 1)b + 4g(C)
≥ 0.

If cli(X,L) = 0, then b = 0 and g(C) = 0. Then we have cli(X,L) = 8e − 4. But since
cli(X,L) = 0, we have e = 1

2 and this is impossible. Therefore cli(X,L) > 0 holds in this case,
too.

Since cli(X,L) for i ≥ 2 is divided by 4, we see that cli(X,L) ≥ 4.

Hence we see from Proposition 4.3 that def(X,L) = 0 and codeg(X,L) = 8e+4nb+4(g(C)−1).

(ix) The case where (X,L) is a scroll over a smooth curve C with n = dimX ≥ 3. Then there
exists an ample vector bundle E on C of rank n such that X = PS(E) and L = H(E).
Then by [17, Example 3.9] we have

cli(X,L) =


s1(E), if i = 0,
2g(C) − 2 + 2c1(E), if i = 1,
c1(E), if i = 2,
0, if i ≥ 3.

In this case, def(X,L) = n − 2 and codeg(X,L) = c1(E).

(x) The case where (X,L) is (PS(E), H(E)), where S is a smooth surface and E is an ample vector
bundle of rank n − 1. Then by [17, Example 3.10] we have

cli(X,L) =



s2(E), if i = 0,
(s1(E) + KS)s1(E) + 2s2(E), if i = 1,
c2(S) + 3c1(E)2 + 2KSc1(E), if i = 2,
2c2(E) + (c1(E) + KS)c1(E), if i = 3,
c2(E), if i = 4 and n ≥ 4,
0, if i ≥ 5 and n ≥ 5.

(x.1) Assume that KS + c1(E) is not nef. Here we note that rank E ≥ 2 = dim S. Then by a result
of [35, Theorem 1] we see that (S, E) ∼= (P2,OP2(1) ⊕OP2(1)). In this case, c2(S) = 3, c1(E)2 = 4,
KSc1(E) = −6, c2(E) = 1, s2(E) = 3. So we get the following.

cli(X,L) =


3, if i = 0,
4, if i = 1,
3, if i = 2,
0, if i = 3.

Hence in this case def(X,L) = 1 and codeg(X,L) = 3.
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Remark 4.1 Here we note that if (S, E) ∼= (P2,OP2(1) ⊕OP2(1)), then (X,L) = (PS(E),H(E)) is
a scroll over P1.

(x.2) Next we consider the case where KS + c1(E) is nef. Then the following holds.

Claim 4.1 cli(X,L) > 0 for every 0 ≤ i ≤ min{4, n}.

Proof. First of all, since E is ample, we see from [20, Example 12.1.7] and Remark 2.1 that
cl0(X,L) = s2(E) > 0. Next we consider the case of i ≥ 1. (KS + c1(E))c1(E) ≥ 0 because
KS + c1(E) is nef. Moreover c2(E) > 0 since E is ample. Hence cl1(X,L) > 0, cl3(X,L) > 0
and cl4(X,L) > 0 for n ≥ 4. (Here we note that c1(E) = s1(E).) Finally we consider the case of
cl2(X,L). We note the following.

(a) If κ(S) ≥ 0, then c2(S) ≥ 0.

(b) If κ(S) = −∞ and q(S) = 0, then c2(S) ≥ 3.

(c) If κ(S) = −∞ and q(S) ≥ 1, then c2(S) ≥ 4(1 − q(S)).

So if κ(S) ≥ 0 or κ(S) = −∞ and q(S) = 0, then

cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E)
≥ c1(E)2 > 0.

If κ(S) = −∞ and q(S) ≥ 1, then

cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E)
≥ c1(E)2 + 4(g(S, c1(E)) − q(S)).

Since κ(S) = −∞, we have g(S, c1(E)) ≥ q(S) by [8, Theorem 2.1]. Therefore we get cl2(X,L) ≥
c1(E)2 > 0.

Therefore, in this case, we get def(X,L) = max{0, 4 − n} and

codeg(X,L) =
{

2c2(E) + (c1(E) + KS)c1(E), if n = 3,
c2(E), if n ≥ 4.

In general, if X is a projective bundle over a smooth projective variety Y of dimension m with
dimX ≥ 2m and L is the tautological line bundle H(E), then we can calculate def(X,L) and
codeg(X,L).

Proposition 4.4 Let X be an n-dimensional projective bundle PY (E) over a smooth projective
variety Y of dimension m and let H(E) be the tautological line bundle. Assume that n ≥ 2m.
Then def(X,H(E)) = n − 2m and codeg(X,H(E)) = cm(E).

Proof. If j − 2 ≥ 2m − 1, that is, j ≥ 2m + 1, then by [15, Theorem 3.1 (3.1.1)] we have

clj(PY (E),H(E)) = (−1)j(ej(PY (E),H(E)) − 2ej−1(PY (E),H(E)) + ej−2(PY (E),H(E)))
= (−1)j((j − m + 1)cm(Y ) − 2(j − m)cm(Y ) + (j − m − 1)cm(Y ))
= 0.

If j = 2m, then by [15, Theorem 3.1 (3.1.1) and (3.1.2)]

cl2m(PY (E),H(E)) = (−1)2m(e2m(PY (E),H(E)) − 2e2m−1(PY (E),H(E)) + e2m−2(PY (E),H(E)))
= ((m + 1)cm(Y ) − 2mcm(Y ) + (m − 1)cm(Y ) + cm(E))
= cm(E) > 0.
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Hence by Definition 3.8 we have

def(X,H(E)) = min{ i | cln−i(X,H(E)) ̸= 0} = n − 2m.

codeg(X,H(E)) = cm(E).

This completes the proof.

Assume that (X,L) is a Pn−3-bundle over a smooth projective variety Y with n ≥ 4 and
dimY = 3. Let E be an ample vector bundle on Y such that X ∼= PY (E) and L = H(E). Then by
[15, Theorem 3.1] cli(X,L) is the following.

cli(X,L) =



s3(E), if i = 0,

3s3(E) + (s1(E) + KY )s2(E), if i = 1,

3s3(E) + 12(s1(E) + KY )s2(E)
+(s1(E) + KY )s1(E)2 + c2(Y )s1(E), if i = 2,

−c3(Y ) + 2c3(E) − 2c1(E)c2(E) + 4c1(E)3

+3KY c1(E)2 + 2c2(Y )c1(E), if i = 3,

3c3(E) + 12(c1(E) + KY )c2(E)
+(c1(E) + KY )c1(E)2 + c2(Y )c1(E), if i = 4,

3c3(E) + (c1(E) + KY )c2(E), if i = 5 and n ≥ 5,

c3(E), if i = 6 and n ≥ 6,

0, if i ≥ 7 and n ≥ 7.

By considering the above results, we can propose the following conjecture.

Conjecture 4.1 Assume that (X,L) is a Pn−m-bundle over a smooth projective variety Y with
dimY = m. Let E be an ample vector bundle on Y such that X ∼= PY (E) and L = H(E). Assume
that n ≥ 2m. For any integer i with 0 ≤ i ≤ m we set

Fi(s1(E), . . . , sm(E)) := cli(X,L).

Then for any integer j with m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular
Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).

Remark 4.2 This conjecture is true for the case where m = 1, 2 and 3.

By looking at the above examples, we see that cli+1(X,L) = 0 if cli(X,L) = 0. So we can
propose the following problem.

Problem 4.1 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n − 1. Is it true that cli+1(X,L) = 0 if cli(X,L) = 0 ?

Remark 4.3 Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume that L is spanned
and g(X,L) ≤ q(X) + 2. Then (X,L) is one of the following types (see [9], [10] and [11]).
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(a) (Pn,OPn(1)).

(b) (Qn,OQn(1)).

(c) A scroll over a smooth curve.

(d) A Del Pezzo manifold1 with Ln ≥ 2.

(e) X is a double covering of Pn branched along a smooth hypersurface of degree 6, and L is the
pull-back of OPn(1).

(f) A scroll over a smooth surface S and (X,L) satisfies one of the types (2-1), (2-2) and (2-3)
in [11, Theorem 3.3].

(g) A hyperquadric fibration over a smooth curve C and (X,L) satisfies one of the types (3-1)
and (3-2) in [11, Theorem 3.3].

Here we calculate the ith sectional class of the above (X,L).
If (X,L) is the type (a) (resp. (b), (c) and (d)), then we have already calculated the ith

sectional classes (see Example 4.1 (i), (ii), (vii), (ix)).
If (X,L) is the type (e), then by (vii.7) in Example 4.1, we have

cli(X,L) =
{

2, if i = 0,
6 · 5i−1, if i ≥ 1.

Next we consider the case (f). Here we use the same notation as in [11, Theorem 3.3]. First we
assume that (X,L) is the type (2-1) in [11, Theorem 3.3]. Then we have KS = −2Hα−2Hβ , c1(E) =
2Hα + 3Hβ and c2(E) = (Hα + 2Hβ)(Hα + Hβ) = 3. Hence K2

S = 8, KSc1(E) = −10, c1(E)2 = 12
and Ln = s2(E) = c1(E)2 − c2(E) = 9. On the other hand since c2(S) = 12χ(OS) − K2

S = 4, by
[15, Corollary 3.1 (3.1.2)] we have

ei(X,L) =


9, if i = 0,
−2, if i = 1,
7, if i = 2,
8, if i = 3.

Therefore

cli(X,L) =


9, if i = 0,
20, if i = 1,
20, if i = 2,
8, if i = 3.

Next we consider the type (2-2) in [11, Theorem 3.3]. Then KS = −3H+E and E = (2H−E)⊕2.
Hence K2

S = 8, c1(E)2 = (4H − 2E)2 = 12, c2(E) = (2H − E)2 = 3, KSc1(E) = −10 and
s2(E) = c1(E)2 − c2(E) = 9. We also note that c2(S) = 12χ(OS) − K2

S = 4. Hence we have

ei(X,L) =


9, if i = 0,
−2, if i = 1,
7, if i = 2,
8, if i = 3.

Therefore

cli(X,L) =


9, if i = 0,
20, if i = 1,
20, if i = 2,
8, if i = 3.

1Here we assume that L is spanned. So we see that Ln ≥ 2
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Next we consider the type (2-3) in [11, Theorem 3.3]. Then KS = −2H(F) + c1(F)F =
−2H(F)+F , E = H(F)⊗ p∗G, deg G = 1 and H(G)2 = 1. Hence K2

S = 4H(F)2 − 4 = 0, c1(E)2 =
(2H(F) + F )2 = 8, c2(E) = c2(p∗G) + H(G)c1(p∗G) + H(G)2 = 2, KSc1(E) = −4H(G)2 = −4 and
s2(E) = c1(E)2 − c2(E) = 6. We also note that c2(S) = 12χ(OS) − K2

S = 0. Hence we have

ei(X,L) =


6, if i = 0,
−4, if i = 1,
2, if i = 2,
0, if i = 3.

Therefore

cli(X,L) =


6, if i = 0,
16, if i = 1,
16, if i = 2,
8, if i = 3.

Finally we consider the case (g).
First we assume that (X,L) is the type in the type (3-1) in [11, Theorem 3.3]. Then by Example
4.1 (viii) we have

cli(X,L) =


6, if i = 0,
16, if i = 1,
16, if i = 2,
8, if i = 3.

Next we consier the type (3-2) in [11, Theorem 3.3]. Then e = d − 3 and b = 6 − d. So by
Example 4.1 (viii) we have

cli(X,L) =

 d, if i = 0,
2d + 2, if i = 1,
4(6 − d)(i − 1) + 4(d − 1), if 2 ≤ i ≤ n.

Here we note that 3 ≤ d ≤ 9 holds in this case, and if d = 8 (resp. d ̸= 8), then 3 ≤ n ≤ 4
(resp. n = 3).

Remark 4.4 Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume that q(X) = 0, L is
spanned and g(X,L) = 3. Then (X,L) is one of (I-2), (III), (IV), (IV′) and (V) in [19, Theorem
2.1]. Here we calculate the second sectional class of (X,L), which will be used in Theorem 6.3.

(A) First we consider the case (I-2) in [19, Theorem 2.1]. Then by Example 4.1 (viii) we have
cl2(X,L) = 8e + 8b + 4(g(C) − 1) = 8e + 8b − 4 = 28.

(B) Next we consider the case (III) in [19, Theorem 2.1].
(B.1a) If (X,L) is the type (III-1a), then n = 5 and cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E) = 27
by Example 4.1 (x).
(B.1b) If (X,L) is the type (III-1b), then n = 4. If (S, E) = (P2,OP2(1)⊕2 ⊕ OPn(2)), then by
Example 4.1 (x) we have cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E) = 27.
If (S, E) = (P2, TP2 ⊕ OPn(1)), then by Example 4.1 (x) we have cl2(X,L) = c2(S) + 3c1(E)2 +
2KSc1(E) = 27.
(B.1c) If (X,L) is the type (III-1c), then S ∼= P2, rankE = 2 and c1(E) = OP2(4). Hence cl2(X,L) =
c2(S) + 3c1(E)2 + 2KSc1(E) = 27.
(B.2) If (X,L) is the type (III-2), then S is a Del Pezzo surface with K2

S = 2 and E is an
ample vector bundle of rank two on S with c1(E)2 = 8 and KSc1(E) = −4. Hence cl2(X,L) =
c2(S) + 3c1(E)2 + 2KSc1(E) = 26.
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(C) Next we consider the case (IV) in [19, Theorem 2.1]. By Proposition 4.1 we have cl2(X,L) =
4 · 32 = 36.

(D) Next we consider the case (IV′) in [19, Theorem 2.1]. Since cl2(X,L) and cl3(X,L) are invariant
under simple blowing ups by Corollary 3.3, we have cl2(X,L) = 4 · 32 = 36.

(E) Next we consider the case (V) in [19, Theorem 2.1].
(E.1) If (X,L) is the type (V-1), then by Proposition 4.2 we have cl2(X,L) = 8 · 71 = 56.
(E.2) If (X,L) is the type (V-2), then (X,L) is a Mukai manifold, that is, OX(KX+(n−2)L) = OX .
Hence by [12, Example 2.10 (7)] we have g2(X,L) = 1 and χH

2 (X,L) = 1−h1(OX)+g2(X,L) = 2,
where χH

2 (X,L) is the second sectional H-arithmetic genus of (X,L) (see [13, Definition 2.2 and
Remark 2.1 (5)]). Furthermore by [14, Proposition 3.1] we have

h1,1
2 (X,L) = 10χH

2 (X,L) − (KX + (n − 2)L)2Ln−2 + 2h1(OX)
= 20.

Here h1,1
2 (X,L) denotes the second sectional Hodge number of type (1, 1) (see [13, Definition 3.1

(3)]). Hence by [13, Theorem 3.1 (3.1.1), (3.1.3) and (3.1.4)] we get b2(X,L) = 2g2(X,L) +
h1,1

2 (X,L) = 22. Since b1(X,L) = 2g1(X,L) = 6 and b0(X,L) = Ln, we have

e2(X,L) = 2b0(X) − 2b1(X) + b2(X,L)
= 2 − 2 · 0 + 22 = 24,

e1(X,L) = 2b0(X) − b1(X,L)
= 2 − 6 = −4,

e0(X,L) = b0(X,L)
= 4.

Therefore we get cl2(X,L) = 24 − 2(−4) + 4 = 36.

Remark 4.5 Let (X,L) be a polarized manifold of dimension n ≥ 3 such that h0(L) ≥ n + 1 and
Ln ≤ 2. Then we see that ∆(X,L) ≤ 1, and (X,L) is one of the following types.

(i) (Pn,OPn(1)).

(ii) (Qn,OQn(1)).

(iii) X is a double covering of Pn whose branch locus is of degree 2g(X,L) + 2 and L is the pull
back of OPn(1). In this case we see that g(X,L) ≥ 1, and if g(X,L) = 1, then (X,L) is a
Del Pezzo manifold.

Here we calculate cli(X,L). If (X,L) is the type (i) (resp. (ii)), then we get values of cli(X,L)
from Example 4.1 (i) (resp. Example 4.1 (ii)).

If (X,L) is the type (iii), then by Proposition 4.2 we have cli(X,L) = (2g(X,L)+2)(2g(X,L)+
1)i−1 for i ≥ 1 and cl0(X,L) = 2.

Remark 4.6 Here we calculate cli(X,L) if (X,L) is the type (e) in Theorem 2.1.
(i) If (S, E) is the type (e.1), then c1(E) = OP2(3), c1(E)2 = 9, c2(S) = 3, c2(E) = 2, K2

S = 9,
KSc1(E) = −9 and s2(E) = c1(E)2 − c2(E) = 7. Hence by Example 4.1 (x)

i 0 1 2 3
cli(X,L) 7 14 12 4
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In this case, (X,L) = (PS(E),H(E)) is a Del Pezzo manifold with L3 = 7.

(ii) If (S, E) is the type (e.2), then c1(E) = OQ2(2), c1(E)2 = 8, c2(S) = 4, c2(E) = 2, K2
S = 8,

KSc1(E) = −8 and s2(E) = c1(E)2 − c2(E) = 6. Hence by Example 4.1 (x)

i 0 1 2 3
cli(X,L) 6 12 12 4

In this case, (X,L) = (PS(E),H(E)) is a Del Pezzo manifold with L3 = 6.

(iii) If (S, E) is the type (e.3), then c1(E) = 2H(F) + π∗c1(G), c1(E)2 = 8, c2(S) = 0, c2(E) = 2,
K2

S = 0, KSc1(E) = −4 and s2(E) = c1(E)2 − c2(E) = 6. Hence by Example 4.1 (x)

i 0 1 2 3
cli(X,L) 6 16 16 8

(iv) Assume that (S, E) is the type (e.4). Then there exists a line bundle OP2(2b) such that
the branch locus C ∈ |OP2(2b)|. Hence by Example 4.1 (x) c1(E) = f∗OP2(2), c1(E)2 = 8,
c2(S) = 2c2(P2) + 2g(C) − 2 = 4b2 − 6b + 6, c2(E) = 2, K2

S = 2(b − 3)2, KSc1(E) = 4(b − 3) and
s2(E) = c1(E)2 − c2(E) = 6. Hence by Example 4.1 (x)

i 0 1 2 3
cli(X,L) 6 4b + 8 4b2 + 2b + 6 4b

If b = 1, then (X,L) = (PS(E),H(E)) is a Del Pezzo manifold with L3 = 6.

5 The case where i = 1

In this section, we consider the case where i = 1. Here we assume that n ≥ 3. In this case we have

cl1(X,L) = −e1(X,L) + 2e0(X,L) (10)
= 2g1(X,L) − 2 + 2Ln.

Since g1(X,L) ≥ 0 and Ln ≥ 1, we see that cl1(X,L) ≥ 0. We also note that c1(X,L) is even.
Next we consider a classification of (X,L) with small cl1(X,L).

(1) First we consider the case where cl1(X,L) = 0.

Proposition 5.1 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 0, then
(X,L) is isomorphic to (Pn,OPn(1)).

Proof. If cl1(X,L) = 0, then we have g1(X,L) = 0 and Ln = 1 from (10). Therefore we see
from [7, (12.1) Theorem and (5.10) Theorem] that (X,L) is isomorphic to (Pn,OPn(1)).

(2) Next we consider the case where cl1(X,L) = 2.

Proposition 5.2 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 2, then
(X,L) is one of the following types.

(a) (Qn,OQn(1)).

(b) A Del Pezzo manifold and Ln = 1.

(c) A scroll over an elliptic curve and Ln = 1.
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Proof. Then by (10) we have (g1(X,L), Ln) = (0, 2) or (1, 1). If (X,L) is the first type, then
by [7, (12.1) Theorem and (5.10) Theorem] (X,L) is the type (a) above. If (X,L) is the last type,
then we see from [7, (12.3) Theorem] that (X,L) is either the type (b) or the type (c) above.

(3) Next we consider the case where cl1(X,L) = 4.

Proposition 5.3 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 4, then
(X,L) is one of the following types.

(a) (PP1(E),H(E)), where E ∼= OP1(1) ⊕OP1(1) ⊕OP1(1).

(b) A Del Pezzo manifold and Ln = 2.

(c) A scroll over an elliptic curve and Ln = 2.

(d) KX = (3 − n)L and Ln = 1.

(e) (X,L) is a simple blowing up of (M,A), where M is a double covering of Pn with branch
locus being a smooth hypersurface of degree 6 and A = π∗(OPn(1)), where π : M → Pn is its
double covering.

(f) (PS(E),H(E)), where (S, E) is one of the types 1), 2-i) and 4-b) in [6, (2.25) Theorem].

(g) A hyperquadric fibration over a smooth curve C. In this case C is one of the following types
(here we use the notation in Definition ?? (ii)):

(g.1) C is an elliptic curve, b = 1 and e = 0.

(g.2) C is P1 and E ∼= OP1(−1) ⊕OP1(−1) ⊕OP1 ⊕OP1 and b = 5.

(h) (PC(E),H(E)), where C is a smooth curve of genus two and E is an ample vector bundle of
rank n on C with c1(E) = 1.

Proof. By (10) we have (g1(X,L), Ln) = (0, 3), (1, 2) or (2, 1). If (g1(X,L), Ln) = (0, 3),
then by [7, (12.1) Theorem and (5.10) Theorem] (X,L) is the type (a) above. If (g1(X,L), Ln) =
(1, 2), then we see from [7, (12.3) Theorem] that (X,L) is either the type (b) or (c) above. If
(g1(X,L), Ln) = (2, 1), then by using a list of a classification of polarized manifolds with g1(X,L) =
2 and Ln = 1 (see [5, (1.10) Theorem, (3.7) and (3.30) Theorem]) we see that (X,L) is one of the
types from (c) to (h) above.

6 The case where i = 2

If i = 2 and κ(X) ≥ 0, then we can get the following lower bound.

Theorem 6.1 Let X be a smooth projective variety of dimension n with κ(X) ≥ 0 and Let
L1, . . . , Ln−2, A1, A2 be ample line bundles on X. Then the following inequality holds.

cl2(X,L1, . . . , Ln−2;A1, A2) ≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2

+(L1 + · · · + Ln−2 + A1)L1 · · ·Ln−2A1

+(L1 + · · · + Ln−2 + A2)L1 · · ·Ln−2A2 + L1 · · ·Ln−2A1A2.
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Proof. First we note that

cl2(X,L1, . . . , Ln−2;A1, A2)
= b2(X,L1, . . . , Ln−2) − b0(X) + b1(X,L1, . . . , Ln−2, A1) − b1(X)

+b1(X,L1, . . . , Ln−2, A2) − b1(X) + b0(X,L1, . . . , Ln−2, A1, A2) − b0(X)
= e2(X,L1, . . . , Ln−2) + 2g1(X,L1, . . . , Ln−2, A1)

+2g1(X,L1, . . . , Ln−2, A2) + L1 . . . Ln−2A1A2 − 4.

From [16, Theorem 5.3.1], we have

e2(X,L1, . . . , Ln−2) ≥
1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2.

Hence

cl2(X,L1, . . . , Ln−2;A1, A2)

≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

L1 · · ·Ln−2

+2g1(X,L1, . . . , Ln−2, A1) + 2g1(X,L1, . . . , Ln−2, A2) + L1 · · ·Ln−2A1A2 − 4

=
1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

L1 · · ·Ln−2

+(KX + L1 + · · · + Ln−2 + A1)L1 · · ·Ln−2A1

+(KX + L1 + · · · + Ln−2 + A2)L1 · · ·Ln−2A2 + L1 · · ·Ln−2A1A2

≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

L1 · · ·Ln−2

+(L1 + · · · + Ln−2 + A1)L1 · · ·Ln−2A1 + (L1 + · · · + Ln−2 + A2)L1 · · ·Ln−2A2

+L1 · · ·Ln−2A1A2.

Therefore we get the assertion.

Here we classify polarized manifolds (X,L) such that L is spanned and cl2(X,L) ≤ 15.

Theorem 6.2 Let (X,L) be a polarized manifold (X,L) with dimX = n ≥ 3. Assume that L is
spanned and cl2(X,L) ≤ 15. Then (X,L) is one of the following.

(a) (Pn,OPn(1)). In this case cl2(X,L) = 0.

(b) (Qn,OQn(1)). In this case cl2(X,L) = 2.

(c) A scroll over a smooth curve. In this case 3 ≤ cl2(X,L) ≤ 15.

(d) (PS(E),H(E)), where (S, E) ∼= (P2,OP2(1) ⊕OP2(1)). In this case cl2(X,L) = 3.

(e) A Del Pezzo manifold (X,L) with Ln ≥ 2. In this case cl2(X,L) = 12.

Proof. We note that

cl2(X,L) = e2(X,L) − 2e1(X,L) + e0(X,L)
= b2(X,L) − b0(X) + 2(b1(X,L) − b1(X)) + b0(X,L) − b0(X)
= (b2(X,L) − b2(X)) + (b2(X) − b0(X)) + 4(g1(X,L) − h1(OX)) + (b0(X,L) − b0(X)).
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We also note that b0(X,L) ≥ 1 = b0(X) and b2(X) ≥ b0(X). Since L is spanned, we have
b2(X,L) ≥ b2(X) and g1(X,L) ≥ h1(OX) by [13, Proposition 3.3 (2)] and [2, Theorem 7.2.10].
Hence we get the following.

• If 0 ≤ cl2(X,L) ≤ 3, then g1(X,L) = h1(OX) holds.

• If 4 ≤ cl2(X,L) ≤ 7, then g1(X,L) ≤ h1(OX) + 1 holds.

• If 8 ≤ cl2(X,L) ≤ 11, then g1(X,L) ≤ h1(OX) + 2 holds.

• If cl2(X,L) = 12, then g1(X,L) ≤ h1(OX) + 2 or Ln = 1 holds.

• If cl2(X,L) = 13, then g1(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 holds.

• If cl2(X,L) = 14, then g1(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 or b2(X,L) = b2(X) holds.

• If cl2(X,L) = 15, then g1(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 or b2(X,L) ≤ b2(X) + 1 holds.

Hence by [14, Theorem 4.1], Theorem 2.1, Remarks 4.3, 4.5 and 4.6 and Example 4.1, we get
the assertion.

Next we consider the case where cl2(X,L) = 16.

Theorem 6.3 Let (X,L) be a polarized manifold (X,L) with dimX = n ≥ 3. Assume that L is
spanned and cl2(X,L) = 16. Then (X,L) is one of the following.

(a) A scroll over a smooth curve with c1(E) = 16.

(b) A hyperquadric fibration over an elliptic curve with e = 4, b = −2 and E is ample. (Here we
use the notation in Notation 2.1 (1)).

(c) (PS(E),H(E)) and (S, E) ∼= (PC(F), π∗(G) ⊗ H(F)), where C is an elliptic curve, F and G
are indecomposable vector bundles of rank two on C with degF = 1 and deg G = 1, and
π : PC(F) → C is the projection map.

Proof. By the same argument as the proof of Theorem 6.2, one of the following types occurs.

(i) g1(X,L) ≤ h1(OX) + 2.

(ii) Ln ≤ 2.

(iii) b2(X,L) ≤ b2(X) + 1.

(iv) g1(X,L) = h1(OX) + 3, Ln = 3 and b2(X,L) = b2(X) + 2.

If (X,L) satisfies one of the cases (i), (ii), or (iii), then we see from [14, Theorem 4.1], Theorem
2.1, Remarks 4.3 and 4.5, and Example 4.1 that (X,L) is one of the types (a), (b) and (c) in
Theorem 6.3. So we may assume that the case (iv) occurs. Then ∆(X,L) = n + Ln − h0(L) ≤
n + 3 − (n + 1) ≤ 2.

Claim 6.1 h1(OX) = 0 holds.

Proof. If ∆(X,L) ≤ 1, then by [7, (5.10) Theorem and (6.7) Corollary] we get the assertion.
So we may assume that ∆(X,L) = 2. Since L is spanned, h0(L) = n+1 and Ln = 3, the morphism
X → Pn defined by |L| is a triple covering. So by [28, Theorem 7.1.15], we get the assertion.

Hence g1(X,L) = 3. Since Bs|L| = ∅, we see from Remark 4.4 that this case (iv) cannot occur.
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7 The case where i = 3

Here we consider a classification of (X,L) such that L is spanned and cl3(X,L) ≤ 8.

Theorem 7.1 Let (X,L) be a polarized manifold with dimX = n ≥ 3. Assume that L is spanned
and cl3(X,L) ≤ 8. Then (X,L) is one of the following.

(a) (Pn,OPn(1)). In this case cl3(X,L) = 0.

(b) A scroll over a smooth curve. In this case cl3(X,L) = 0.

(c) (Qn,OQn(1)). In this case cl3(X,L) = 2.

(d) (P3,OP3(2)). In this case cl3(X,L) = 4.

(e) A simple blowing up of (P3,OP3(2)). In this case cl3(X,L) = 4.

(f) (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)). In this case cl3(X,L) = 4.

(g) (P2 × P2,⊗2
i=1p

∗
iOP2(1)). In this case cl3(X,L) = 6.

(h) A hyperquadric fibration over a smooth curve C.

(h.1) g(C) = 1, n = 3, L3 = 6, e = 4, b = −2, and E is ample. In this case cl3(X,L) = 8.

(h.2) g(C) = 0, n = 3, L3 = 9, e = 6, b = −3 and E ∼= OP1(1) ⊕ OP1(1) ⊕ OP1(2) ⊕ OP1(2)
(see [5, (3.30) Theorem 9)]). In this case cl3(X,L) = 8.

(i) (PS(E),H(E)) and (S, E) is one of the following.

(i.1) (P2,OP2(1) ⊕OP2(1)). In this case cl3(X,L) = 0.

(i.2) (P2,OP2(1) ⊕OP2(2)). In this case cl3(X,L) = 4.

(i.3) (Q2,OQ2(1) ⊕OQ2(1)). In this case cl3(X,L) = 4.

(i.4) S is a double covering f : S → P2 branched along a smooth hypersurface of degree 2,
and E = f∗(OPn(1)) ⊕ f∗(OPn(1)). In this case cl3(X,L) = 4.

(i.5) (P2, TP2). In this case cl3(X,L) = 6.

(i.6) (PC(F), π∗(G)⊗H(F)), where C is an elliptic curve, F and G are indecomposable vector
bundles of rank two on C with degF = 1 and deg G = 1, and π : PC(F) → C is the
projection map. In this case cl3(X,L) = 8.

(i.7) S is a double covering f : S → P2 branched along a smooth hypersurface of degree 4,
and E ∼= f∗(OP2(1)) ⊕ f∗(OP2(1)). In this case cl3(X,L) = 8.

(i.8) (P1
α×P1

β , [Hα +2Hβ ]⊕ [Hα +Hβ ]) and Hα (resp. Hβ) is the ample generator of Pic(Pα)
(resp. Pic(Pβ)). In this case cl3(X,L) = 8.

(i.9) S is the blowing up of P2 at a point and E ∼= [2H − E]⊕2, where H is the pull back of
OP2(1) and E is the exceptional divisor. In this case cl3(X,L) = 8.

Proof. We note that

cl3(X,L) = −e3(X,L) + 2e2(X,L) − e1(X,L)
= b3(X,L) − b1(X) + 2(b2(X,L) − b2(X)) + b1(X,L) − b1(X)
= (b3(X,L) − b3(X)) + (b3(X) − b1(X)) + 2(b2(X,L) − b2(X)) + 2(g1(X,L) − h1(OX)).

We also note that cl3(X,L) is even and b3(X) ≥ b1(X). Since L is spanned, we have b3(X,L) ≥
b3(X), b2(X,L) ≥ b2(X) and g1(X,L) ≥ h1(OX) by [13, Proposition 3.3 (2)] and [2, Theorem
7.2.10]. Hence we get the following.
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• If 0 ≤ cl3(X,L) ≤ 2, then b2(X,L) ≤ b2(X) + 1 holds.

• If cl3(X,L) = 4, then b2(X,L) ≤ b2(X) + 1 or g1(X,L) = h1(OX) holds.

• If cl3(X,L) = 6, then b2(X,L) ≤ b2(X) + 1 or g1(X,L) ≤ h1(OX) + 1 holds.

• If cl3(X,L) = 8, then b2(X,L) ≤ b2(X) + 1 or g1(X,L) ≤ h1(OX) + 2 holds.

By [14, Theorem 4.1], Theorem 2.1, Remarks 4.3 and 4.6, and Example 4.1 we get the assertion2.

8 The case where i = 4

Here we consider a classification of (X,L) such that L is spanned (resp. very ample) and cl4(X,L) ≤
1 (resp. cl4(X,L) = 2).

Theorem 8.1 Let (X,L) be a polarized manifold (X,L) with dimX = n ≥ 4. Assume that L is
spanned and cl4(X,L) ≤ 1. Then (X,L) is one of the following.

(a) (Pn,OPn(1)). In this case cl4(X,L) = 0.

(b) A scroll over a smooth curve. In this case cl4(X,L) = 0.

Proof. We note that the following equality holds.

cl4(X,L) = b4(X,L) − b2(X) + 2(b3(X,L) − b3(X)) + b2(X,L) − b2(X)
= b4(X,L) − b4(X) + (b4(X) − b2(X)) + 2(b3(X,L) − b3(X)) + b2(X,L) − b2(X).

Since L is spanned, we see from [13, Proposition 3.3 (2)] that b4(X,L) ≥ b4(X), b3(X,L) ≥ b3(X)
and b2(X,L) ≥ b2(X) hold. Furthermore by the strong Lefschetz theorem, we have b4(X) ≥ b2(X).
Hence if cl4(X,L) ≤ 1, then b2(X,L) ≤ b2(X) + 1. Since n ≥ 4, we can easily check that (X,L) is
one of the above types by [14, Theorem 4.1], Theorem 2.1 and Example 4.1.

Remark 8.1 If L is spanned, then there does not exists (X,L) with cl4(X,L) = 1.

Theorem 8.2 Let (X,L) be a polarized manifold (X,L) with dimX = n ≥ 5. Assume that L is
very ample and cl4(X,L) = 2. Then (X,L) is (Qn,OQn(1)).

Proof. By the same argument as above, (X,L) with cl4(X,L) = 2 satisfies one of the following
types.

(I) b2(X,L) ≤ b2(X) + 1.

(II) b4(X,L) = b4(X).

(I) If b2(X,L) ≤ b2(X)+ 1 holds, then by [14, Theorem 4.1], Theorem 2.1 and Example 4.1 we see
that (X,L) with cl4(X,L) = 2 is (Qn,OQn(1)).
(II) Next we assume that b4(X,L) = b4(X) holds. Then by [14, Theorem 4.2], we see that (X,L)
is one of the following types since we assume that n ≥ 5.

(II.1) (Pn,OPn(1)).

(II.2) A scroll over a smooth projective curve.

2We note that the type (2-1) (resp. (2-2), (2-3), (3-1) and (3-2)) in [11, Theorem 3.3] corresponds to (i.8) (resp.
(i.9), (i.6), (h.1) and (h.2)).
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(II.3) (PS(E),H(E)), where S is a smooth projective surface and E is an ample vector bundle of
rank n − 1 on S.

(II.4) X is the Plücker embedding of G(2, 5) and L = OX(1). In this case n = 6.

(II.5) X is a nonsingular hyperplane section of the Plücker embedding of G(2, 5) in P9 and L =
OX(1). In this case n = 5.

Then by calculating cl4(X,L), we see from Example 4.1 that cl4(X,L) = 0 (resp. 0, c2(E), 5 and
5) if (X,L) is the type (II.1) (resp. (II.2), (II.3), (II.4) and (II.5)). Hence we find that the type
(II.3) is possible and in this case c2(E) = 2. But by [30, Theorem 6.1] and [24], the rank of E is two
and so we have n = 3. This contradicts the assumption that n ≥ 5. So we get the assertion.
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