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Abstract

Let X be an n-dimensional smooth projective variety defined over the field of complex
numbers, let L1, . . . , Ln−i, A1 and A2 be ample line bundles on X. In this paper, we will
define the sectional class cli(X, L1, . . . , Ln−i; A1, A2) for every integer i with 0 ≤ i ≤ n, and
we will investigate this invariant. In particular, for every integer i with 0 ≤ i ≤ n, by setting
L1 = · · · = Ln−i = L and A1 = A2 = L, we give a classification of polarized manifolds (X, L)
by the value of cli(X, L) := cli(X, L, · · · , L

| {z }

n−i

; L, L).

1 Introduction

Let X be a smooth projective variety of dimension n defined over the field of complex numbers,
and let L be an ample line bundle on X. Then (X,L) is called a polarized manifold. Assume that
L is very ample and let ϕ : X ↪→ PN be the morphism defined by |L|. Then ϕ is an embedding. In
this situation, its dual variety X∨ → (PN )∨ is a hypersurface of N -dimensional projective space
except some special types. Then the class cl(X,L) of (X,L) is defined by the following.

cl(X,L) =
{

deg(X∨), if X∨ is a hypersurface in (PN )∨

0, otherwise.

A lot of investigations by using cl(X,L) have been obtained (for example [21], [25], [30], [22], [26],
[24], [1], [29] and so on). In this paper, we are going to define a generalization of this invariant.
Let X be a smooth projective variety of dimension n and let L1, . . . , Ln−i, A1 and A2 be ample
(not necessarily very ample) line bundles on X. Then in Section 2 we will define the sectional
class cli(X,L1, . . . , Ln−i;A1, A2) for every integer i with 0 ≤ i ≤ n (see Definition 2.2), and we
will study some fundamental properties concerning this invariant. In section 3, we consider the
following special case: Let L be an ample (not necessarily very ample) line bundle on X and we set
L1 = · · · = Ln−i = L and A1 = A2 = L. Then we will define cli(X,L) := cli(X,L, · · · , L︸ ︷︷ ︸

n−i

;L,L). We

will call this invariant the ith sectional class of (X,L). In section 3, we study this invariant cli(X,L)
for the case where L is not necessarily very ample and will get some results about cli(X,L).

Here we note the following: Assume that L is very ample. Then there exists a member Xj ∈
|Lj−1| such that each Xj is a smooth projective manifold of dimension n − j and Lj := L|Xj for
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every j with 1 ≤ j ≤ n − i. In this case, we see that cli(X,L) is the class of the i dimensional
polarized manifold (Xn−i, Ln−i). In particular, if i = n, then cln(X,L) is equal to the class cl(X,L)
of (X,L) if L is very ample.

As we said above, there are a lot of works about the class cl(X,L) for very ample line bundles
L, that is, the case where i = n and L is very ample. Classifications of (X,L) concerning cli(X,L)
are known for the following cases.

• The case where i = n ≤ 3 and L is very ample (see [21], [25], [22]).

• The case where i = 2, n ≥ 2 and L is very ample (see [30], [26], [24]).

• The case where i = n = 2 and L is ample (see [29]).

In this paper, we give classifications of (X,L) by the value of cli(X,L) for the following cases.

• The case where i = 1, n ≥ 3, cl1(X,L) ≤ 4 and L is ample.

• The case where i = 2, n ≥ 3, cl2(X,L) ≤ 16 and L is ample and spanned.

• The case where i = 3, n ≥ 3, cl3(X,L) ≤ 8 and L is ample and spanned.

• The case where i = 4, n ≥ 5, cl4(X,L) ≤ 1 (resp. cl4(X,L) = 2) and L is ample and spanned
(resp. very ample).

In subsection 3.1, we calculate cli(X,L) for some special cases. The results in subsection 3.1
will be used in order to classify (X,L) by the value of cli(X,L). In subsections 3.2, 3.3, 3.4 and 3.5
we obtain the classification of (X,L) by the value of cl1(X,L), cl2(X,L), cl3(X,L) and cl4(X,L).

We see from the definition of the ith sectional class that it is somewhat hard to calculate this
invariant in general (see also [17]). But we expect that the ith sectional class has properties similar
to those of the class of i-dimensional projective manifolds, and we believe that this invariant is
useful for investigating polarized manifolds. We also hope that we can give a characterization of
special polarized manifolds by the value of sectional classes. This is the reason why we define this
invariant.

In our paper for the future, we will define and study the sectional class for the case of ample
vector bundles.

2 Definition and fundamental results

Definition 2.1 Let L1, . . . , Lm be ample line bundles on a smooth projective variety X. Then
(X,L1, . . . , Lm) is called a multi-polarized manifold of type m.

Definition 2.2 Let X be a smooth projective variety of dimension n ≥ 1, let i be an integer with
0 ≤ i ≤ n and let L1, . . . , Ln−i, A1, A2 be ample line bundles on X.
Then the ith sectional class of (X,L1, . . . , Ln−i;A1, A2) is defined by the following.

cli(X,L1, . . . , Ln−i;A1, A2)

:=


e0(X,L1, . . . , Ln), if i = 0,
(−1){e1(X,L1, . . . , Ln−1) − e0(X,L1, . . . , Ln−1, A1)

−e0(X,L1, . . . , Ln−1, A2)}, if i = 1,
(−1)i{ei(X,L1, . . . , Ln−i) − ei−1(X,L1, . . . , Ln−i, A1)

−ei−1(X,L1, . . . , Ln−i, A2) + ei−2(X,L1, . . . , Ln−i, A1, A2)}, if 2 ≤ i ≤ n.

where ek(X,L1, . . . , Ln−k) is the kth sectional Euler number1 of (X,L1, . . . , Ln−k) [15, Definitions
3.1.1 and 5.1.1].

1For k = n we set ek(X, L1, . . . , Ln−k) := e(X) =
P2n

i=0(−1)ihi(X, C).
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Remark 2.1 (1) If i is odd, then ei(X,L1, . . . , Ln−i) is even.
Proof. First we note that 1 ≤ i because i is odd. Then by the definition of the ith sectional

Betti number bi(X,L1, . . . , Ln−i) (see [15, Definitions 3.2.1 and 5.1.1]), we have

ei(X,L1, . . . , Ln−i) = 2
i−1∑
j=0

(−1)jhj(X, C) + (−1)ibi(X,L1, . . . , Ln−i). (1)

On the other hand, since i is odd, bi(X,L1, . . . , Ln−i) is even by [15, Theorem 4.1 and Definition
5.1.1]. Hence ei(X,L1, . . . , Ln−i) is even.

So if i is odd and A1 = A2 = A, then we see that cli(X,L1, . . . , Ln−i;A, A) is even.
(2) If i = 0, then cl0(X,L1, . . . , Ln;A1, A2) = L1 · · ·Ln > 0.

Definition 2.3 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n. Then the ith sectional class of (X,L) is defined by the following.

cli(X,L) := cli(X,L, . . . , L︸ ︷︷ ︸
n−i

;L,L).

Remark 2.2 Assume that L is very ample. Then there exists a sequence of smooth subvarieties
X ⊃ X1 ⊃ · · · ⊃ Xn−i such that Xj ∈ |Lj−1| and dimXj = n − j for every integer j with
1 ≤ j ≤ n− i, where Lj = L|Xj . In particular, Xn−i is a smooth projective variety of dimension i
and Ln−i is a very ample line bundle on Xn−i. Then cli(X,L) is equal to the class of (Xn−i, Ln−i).

Remark 2.3 ([20, II-1]) Let X be an n-dimensional smooth projective variety and let L be a very
ample line bundle on X. Let X ↪→ PN be the embedding defined by |L|. For every integer i with
0 ≤ i ≤ n, Severi defined the notion of the ith rank ri(X) of X as follows.

ri(X) =
∫

Li(L∨)N−1−i(CX).

Here CX denotes the conormal variety, X∨ denotes the dual variety of X and L∨ = OX∨(1). Then
we see that ri(X) = cln−i(X,L) (see [20, (6) Theorem in II]). We also note that if i = 0, then
r0(X) = cln(X,L) is called the class of X.

Remark 2.4 By Definitions 2.2 and 2.3 we see that

cli(X,L) =

 e0(X,L), if i = 0,
(−1){e1(X,L) − 2e0(X,L)}, if i = 1,
(−1)i{ei(X,L) − 2ei−1(X,L) + ei−2(X,L)}, if 2 ≤ i ≤ n.

Here ei(X,L) is the ith sectional Euler number of (X,L) ([10, Definition 3.1]).

Proposition 2.1 Let X be a smooth projective variety of dimension n and let i be an integer with
0 ≤ i ≤ n. Let L1, . . . , Ln−i, A1, A2 be ample line bundles on X. Then the following holds2.

cli(X,L1, . . . , Ln−i;A1, A2)

=



b0(X,L1, . . . , Ln), if i = 0,
b1(X,L1, . . . , Ln−1) + b0(X,L1, . . . , Ln−1, A1) − b0(X)

+b0(X,L1, . . . , Ln−1, A2) − b0(X), if i = 1,
bi(X,L1, . . . , Ln−i) − bi−2(X) + bi−1(X,L1, . . . , Ln−i, A1) − bi−1(X)

+bi−1(X,L1, . . . , Ln−i, A2) − bi−1(X)
+bi−2(X,L1, . . . , Ln−i, A1, A2) − bi−2(X), if 2 ≤ i ≤ n.

2Here bi(X) denotes the ith Betti number hi(X, C). For i = n, we set bi(X, L1, . . . , Ln−i) := bi(X).
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Proof. Since

(−1)i

2
i−1∑
j=0

(−1)jbj(X) − 4
i−2∑
j=0

(−1)jbj(X) + 2
i−3∑
j=0

(−1)jbj(X)

 = −2bi−1(X) − 2bi−2(X),

the assertion holds by substituting the equality (1) in Remark 2.1 (1) for the formula in Definition
2.2.

Corollary 2.1 Let (X,L) be a polarized manifold of dimension n. For any integer i with 0 ≤ i ≤
n, the following holds.

cli(X,L)

=

 b0(X,L), if i = 0,
b1(X,L) + 2b0(X,L) − 2, if i = 1,
bi(X,L) − bi−2(X) + 2bi−1(X,L) − 2bi−1(X) + bi−2(X,L) − bi−2(X), if 2 ≤ i ≤ n.

Next we study the non-negativity of the sectional class.

Theorem 2.1 Let X be a smooth projective variety of dimension n and let i be an integer with
1 ≤ i ≤ n. Let L1, . . . , Ln−i, A1, A2 be ample and spanned line bundles on X. Then

cli(X,L1, . . . , Ln−i;A1, A2) ≥ 0.

Proof. (i) First we assume that 2 ≤ i. Then by Proposition 2.1, we get

cli(X,L1, . . . , Ln−i, A1, A2)
= bi(X,L1, . . . , Ln−i) − bi−2(X) + bi−1(X,L1, . . . , Ln−i, A1) − bi−1(X)

+bi−1(X,L1, . . . , Ln−i, A2) − bi−1(X) + bi−2(X,L1, . . . , Ln−i, A1, A2) − bi−2(X).

In general, for every ample and spanned line bundles H1, . . . ,Hn−j , by [15, Proposition 4.1 and
Definition 5.1.1] we have bj(X,H1, . . . ,Hn−j) ≥ bj(X) for every integer j with 0 ≤ j ≤ n. On
the other hand, we obtain bi(X) ≥ bi−2(X) by the hard Lefschetz theorem [27, Corollary 3.1.40].
Therefore we get the assertion.
(ii) Next we assume that i = 1. Then by definition we have

cl1(X,L1, . . . , Ln−1, A1, A2) = 2g1(X,L1, . . . , Ln−1) + L1 · · ·Ln−1 (A1 + A2) − 2,

where g1(X,L1, . . . , Ln−1) is the first sectional geometric genus of (X,L1, . . . , Ln−1) (see [12, Defi-
nition 2.1 (2) and Remark 2.2 (2)]). We note that g1(X,L1, . . . , Ln−1) ≥ 0 by [14, Theorem 6.1.1],
and L1 · · ·Ln−1Ak ≥ 1 for k = 1, 2. So we have cl1(X,L1, . . . , Ln−1, A1, A2) ≥ 0.

Remark 2.5 By (ii) in the proof of Theorem 2.1 cl1(X,L1, . . . , Ln−1, A1, A2) ≥ 0 holds for any
merely ample line bundles L1, . . . , Ln−i, A1, A2.

By Definition 2.3, Remark 2.1 (2) and Theorem 2.1 the following holds.

Corollary 2.2 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n. Assume that L is base point free. Then cli(X,L) ≥ 0.

Here we propose the following conjecture.

Conjecture 2.1 Let X be a smooth projective variety of dimension n and let i be an integer with
0 ≤ i ≤ n. Let L1, . . . , Ln−i, A1, A2 be ample line bundles on X. Then

cli(X,L1, . . . , Ln−i;A1, A2) ≥ 0.
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By Remark 2.1 (2) (resp. Remark 2.5), this conjecture is true for the case where i = 0 (resp.
i = 1).

If i = 2 and κ(X) ≥ 0, then we can get the following lower bound.

Theorem 2.2 Let X be a smooth projective variety of dimension n with κ(X) ≥ 0 and let
L1, . . . , Ln−2, A1, A2 be ample line bundles on X. Then the following inequality holds.

cl2(X,L1, . . . , Ln−2;A1, A2) ≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2

+
2∑

j=1

(L1 + · · · + Ln−2 + Aj)L1 · · ·Ln−2Aj + L1 · · ·Ln−2A1A2.

Proof. First we note that

cl2(X,L1, . . . , Ln−2;A1, A2) = e2(X,L1, . . . , Ln−2) + 2g1(X,L1, . . . , Ln−2, A1) − 2
+2g1(X,L1, . . . , Ln−2, A2) − 2 + L1 . . . Ln−2A1A2.

From [15, Theorem 5.3.1], we have

e2(X,L1, . . . , Ln−2) ≥
1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2.

Moreover since κ(X) ≥ 0 we have

2g1(X,L1, . . . , Ln−2, Ak) − 2 ≥ (L1 + · · · + Ln−2 + Ak)L1 · · ·Ln−2Ak

for k = 1, 2. So we get the assertion.

Next we consider the value of the sectional class of a reduction of multi-polarized manifolds.

Proposition 2.2 Let (X,L1, · · · , Ln−i, A1, A2) be a multi-polarized manifold of type n− i+2 with
dimX = n, where i is an integer with 0 ≤ i ≤ n. Let (Y,H1, · · · ,Hn−i, B1, B2) be a multi-polarized
manifold of type n− i + 2 such that (X,L1, · · · , Ln−i, A1, A2) is a composite of simple blowing ups
of (Y,H1, · · · ,Hn−i, B1, B2) and let γ be the number of its simple blowing ups3. Then

cli(X,L1, . . . , Ln−i;A1, A2)

:=

 cl0(Y,H1, . . . ,Hn;B1, B2) − γ, if i = 0,
cl1(Y,H1, . . . ,Hn−1;B1, B2) − 2γ, if i = 1,
cli(Y,H1, . . . ,Hn−i;B1, B2), if 2 ≤ i ≤ n − 1 or i = n ≥ 2.

Proof. By Definition 2.2, Remark 2.1 and [15, Proposition 5.3.1] and its proof, we get the
assertion.

Corollary 2.3 Let (X,L) be a polarized manifold of dimension n ≥ 2 and let (Y,H) be a polarized
manifold such that (X,L) is a composite of simple blowing ups of (Y,H) and let γ be the number
of its simple blowing ups. Then for every integer i with 0 ≤ i ≤ n, we have

cli(X,L) :=

 cl0(Y,H) − γ, if i = 0,
cl1(Y,H) − 2γ, if i = 1,
cli(Y,H), if 2 ≤ i ≤ n − 1 or i = n ≥ 2.

Proof. By putting L1 := L, · · · , Ln−i := L, A1 := L, A2 := L, H1 := H, · · · ,Hn−i := H,
B1 := H and B2 := H, we get the assertion by Proposition 2.2.

3For the definition of a simple blowing up, see [12, Definition 1.5].
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3 On classification of polarized manifolds (X, L) by the sec-
tional class

In this section, we study a classification of polarized manifolds (X,L) by the ith sectional class
cli(X,L).

Notation 3.1 (1) Let Y be a projective variety and let E be a vector bundle on Y . Then PY (E)
denotes the projective bundle over Y associated with E and H(E) denotes the tautological
line bundle.

(2) Let (X,L) be a hyperquadric fibration over a smooth curve C. We put E := f∗(L). Then E
is a locally free sheaf of rank n+1 on C. Let π : PC(E) → C be the projective bundle. Then
X ∈ |2H(E) + π∗(B)| for some B ∈ Pic(C) and L = H(E)|X , where H(E) is the tautological
line bundle of PC(E). We put e := deg E and b := deg B.

Definition 3.1 Let F be a vector bundle on a smooth projective variety X. Then for every integer
j with j ≥ 0, the jth Segre class sj(F) of F is defined by the following equation: ct(F∨)st(F) = 1,
where F∨ := HomOX

(F ,OX), ct(F∨) is the Chern polynomial of F∨ and st(F) =
∑

j≥0 sj(F)tj .

Remark 3.1 (a) Let F be a vector bundle on a smooth projective variety X. Let s̃j(F) be the
jth Segre class which is defined in [19, Chapter 3]. Then sj(F) = s̃j(F∨).
(b) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)

3.1 Calculations on the sectional class of some special polarized mani-
folds

Here we calculate the sectional class of some special polarized manifolds which will be used in the
following subsection. See also [17].

Example 3.1.1 Let (X,L) be a polarized manifold of dimension n ≥ 3 and let g(X,L) be the
sectional genus. Assume that L is spanned and g(X,L) ≤ q(X) + 2. Then (X,L) is one of the
following types (see [6], [7] and [8]).

(a) (Pn,OPn(1)).

(b) (Qn,OQn(1)).

(c) A scroll over a smooth curve.

(d) A Del Pezzo manifold4 with Ln ≥ 2.

(e) X is a double covering of Pn branched along a smooth hypersurface of degree 6, and L is the
pull-back of OPn(1).

(f) A scroll over a smooth surface S and (X,L) satisfies one of the types (2-1), (2-2) and (2-3)
in [8, Theorem 3.3].

(g) A hyperquadric fibration over a smooth curve C and (X,L) satisfies one of the types (3-1)
and (3-2) in [8, Theorem 3.3].

Here we calculate the ith sectional class of the above (e), (f) and (g).
(I) If (X,L) is the type (e), then by [17, Proposition 2.2 in Example 2.1 (vii.7)], we have

4Here we assume that L is spanned. So we see that Ln ≥ 2
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i 0 1 ≤ i
cli(X,L) 2 6 · 5i−1

(II) Next we consider the case (f). Here we use the same notation as in [8, Theorem 3.3].
(II.1) First we assume that (X,L) is the type (2-1) in [8, Theorem 3.3]. Then we have KS =
−2Hα − 2Hβ , c1(E) = 2Hα + 3Hβ and c2(E) = (Hα + 2Hβ)(Hα + Hβ) = 3. Hence K2

S = 8,
KSc1(E) = −10, c1(E)2 = 12 and Ln = s2(E) = c1(E)2 − c2(E) = 9. On the other hand since
c2(S) = 12χ(OS) − K2

S = 4, by [13, Corollary 3.1 (3.1.2)] we have

i 0 1 2 3
ei(X,L) 9 −2 7 8

Therefore

i 0 1 2 3
cli(X,L) 9 20 20 8

(II.2) Next we consider the type (2-2) in [8, Theorem 3.3]. Then KS = −3H + E and E =
(2H − E)⊕2. Hence K2

S = 8, c1(E)2 = (4H − 2E)2 = 12, c2(E) = (2H − E)2 = 3, KSc1(E) = −10
and s2(E) = c1(E)2 − c2(E) = 9. We also note that c2(S) = 12χ(OS) − K2

S = 4. Hence we have

i 0 1 2 3
ei(X,L) 9 −2 7 8

Therefore

i 0 1 2 3
cli(X,L) 9 20 20 8

(II.3) Next we consider the type (2-3) in [8, Theorem 3.3]. Then KS = −2H(F) + c1(F)F =
−2H(F) + F , E = H(F)⊗ p∗G, degF = 1 and deg G = 1. Hence K2

S = 4H(F)2 − 4 = 0, c1(E)2 =
(2H(F) + F )2 = 8, c2(E) = c2(p∗G) + H(G)c1(p∗G) + H(G)2 = 2, KSc1(E) = −4H(G)2 = −4 and
s2(E) = c1(E)2−c2(E) = 6. We also note that c2(S) = 12χ(OS)−K2

S = 0. Hence by [13, Corollary
3.1 (3.1.2)] we have

i 0 1 2 3
ei(X,L) 6 −4 2 0

Therefore

i 0 1 2 3
cli(X,L) 6 16 16 8

(III) Finally we consider the case (g).
(III.1) First we assume that (X,L) is the type in the type (3-1) in [8, Theorem 3.3]. Then by [17,
Example 2.1 (viii)] we have

i 0 1 2 3
cli(X,L) 6 16 16 8

(III.2) Next we consier the type (3-2) in [8, Theorem 3.3]. Then e = d − 3 and b = 6 − d. So by
[17, Example 2.1 (viii)] we have
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i 0 1 2 ≤ i ≤ n
cli(X,L) d 2d + 2 4(6 − d)(i − 1) + 4(d − 1)

Here we note that 3 ≤ d ≤ 9 holds in this case, and if d = 8 (resp. d ̸= 8), then 3 ≤ n ≤ 4
(resp. n = 3).

Example 3.1.2 Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume that q(X) = 0, L
is spanned and g(X,L) = 3. Then (X,L) is one of (I-2), (III), (IV), (IV′) and (V) in [18, Theorem
2.1]. Here we calculate the second sectional class of (X,L), which will be used in Theorem 3.3.2.

(A) First we consider the case (I-2) in [18, Theorem 2.1]. Then by [17, Example 2.1 (viii)] we have
cl2(X,L) = 8e + 8b + 4(g(C) − 1) = 8e + 8b − 4 = 28.

(B) Next we consider the case (III) in [18, Theorem 2.1].
(B.1a) If (X,L) is the type (III-1a), then n = 5 and cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E) = 27
by [17, Example 2.1 (x)].
(B.1b) If (X,L) is the type (III-1b), then n = 4. If (S, E) = (P2,OP2(1)⊕2 ⊕OPn(2)), then by [17,
Example 2.1 (x)] we have cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E) = 27.
If (S, E) = (P2, TP2 ⊕OPn(1)), then by [17, Example 2.1 (x)] we have cl2(X,L) = c2(S)+3c1(E)2 +
2KSc1(E) = 27.
(B.1c) If (X,L) is the type (III-1c), then S ∼= P2, rank(E) = 2 and c1(E) = OP2(4). Hence
cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E) = 27.
(B.2) If (X,L) is the type (III-2), then S is a Del Pezzo surface with K2

S = 2 and E is an
ample vector bundle of rank two on S with c1(E)2 = 8 and KSc1(E) = −4. Hence cl2(X,L) =
c2(S) + 3c1(E)2 + 2KSc1(E) = 26.

(C) Next we consider the case (IV) in [18, Theorem 2.1]. By [17, Proposition 2.1 in Example 2.1
(vii.6)] we have cl2(X,L) = 4 · 32 = 36.

(D) Next we consider the case (IV′) in [18, Theorem 2.1]. Since cl2(X,L) and cl3(X,L) are invariant
under simple blowing ups by Corollary 2.3, we have cl2(X,L) = 4 · 32 = 36.

(E) Next we consider the case (V) in [18, Theorem 2.1].
(E.1) If (X,L) is the type (V-1), then by [17, Proposition 2.2 in Example 2.1 (vii.7)] we have
cl2(X,L) = 8 · 71 = 56.
(E.2) If (X,L) is the type (V-2), then (X,L) is a Mukai manifold, that is, OX(KX+(n−2)L) = OX .
Hence by [9, Example 2.10 (7)] we have g2(X,L) = 1 and χH

2 (X,L) = 1− h1(OX) + g2(X,L) = 2,
where χH

2 (X,L) is the second sectional H-arithmetic genus of (X,L) (see [10, Definition 2.2 and
Remark 2.1 (5)]). Furthermore by [11, Proposition 3.1] we have

h1,1
2 (X,L) = 10χH

2 (X,L) − (KX + (n − 2)L)2Ln−2 + 2h1(OX) = 20.

Here h1,1
2 (X,L) denotes the second sectional Hodge number of type (1, 1) (see [10, Definition 3.1

(3)]). Hence by [10, Theorem 3.1 (3.1.1), (3.1.3) and (3.1.4)] we get b2(X,L) = 2g2(X,L) +
h1,1

2 (X,L) = 22. Since b1(X,L) = 2g(X,L) = 6 (see [10, Remark 3.1 (2)]) and b0(X,L) = Ln, we
have

e2(X,L) = 2b0(X) − 2b1(X) + b2(X,L) = 2 − 2 · 0 + 22 = 24,

e1(X,L) = 2b0(X) − b1(X,L) = 2 − 6 = −4,

e0(X,L) = b0(X,L) = 4.

Therefore we get cl2(X,L) = 24 − 2(−4) + 4 = 36.
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Example 3.1.3 Let (X,L) be a polarized manifold of dimension n ≥ 3 such that h0(L) ≥ n + 1
and Ln ≤ 2. Then we see that ∆(X,L) ≤ 1 and (X,L) is one of the following types5.

(i) (Pn,OPn(1)).

(ii) (Qn,OQn(1)).

(iii) X is a double covering of Pn whose branch locus is of degree 2g(X,L) + 2 and L is the pull
back of OPn(1). In this case we see that g(X,L) ≥ 1, and if g(X,L) = 1, then (X,L) is a
Del Pezzo manifold.

If (X,L) is the type (iii), then by [17, Proposition 2.2 in Example 2.1 (vii.7)] we have cli(X,L) =
(2g(X,L) + 2)(2g(X,L) + 1)i−1 for i ≥ 1 and cl0(X,L) = 2.

Example 3.1.4 Let (X,L) be a polarized manifold of dimension n ≥ 3 such that b2(X,L) =
h2(X, C) + 1. Here we calculate cli(X,L) if (X,L) is the type (e) in [16, Theorem 3.1].
(i) If (S, E) is the type (e.1), then c1(E) = OP2(3), c1(E)2 = 9, c2(S) = 3, c2(E) = 2, K2

S = 9,
KSc1(E) = −9 and s2(E) = c1(E)2 − c2(E) = 7. Hence by [17, Example 2.1 (x)]

i 0 1 2 3
cli(X,L) 7 14 12 4

In this case, (X,L) = (PS(E),H(E)) is a Del Pezzo 3-fold with L3 = 7.

(ii) If (S, E) is the type (e.2), then c1(E) = OQ2(2), c1(E)2 = 8, c2(S) = 4, c2(E) = 2, K2
S = 8,

KSc1(E) = −8 and s2(E) = c1(E)2 − c2(E) = 6. Hence by [17, Example 2.1 (x)]

i 0 1 2 3
cli(X,L) 6 12 12 4

In this case, (X,L) = (PS(E),H(E)) is a Del Pezzo 3-fold with L3 = 6.

(iii) If (S, E) is the type (e.3), then c1(E) = 2H(F) + π∗c1(G), c1(E)2 = 8, c2(S) = 0, c2(E) = 2,
K2

S = 0, KSc1(E) = −4 and s2(E) = c1(E)2 − c2(E) = 6. Hence by [17, Example 2.1 (x)]

i 0 1 2 3
cli(X,L) 6 16 16 8

(iv) If (S, E) is the type (e.4), then there exists a line bundle OP2(2b) such that the branch locus
C ∈ |OP2(2b)|. In this case c1(E) = f∗OP2(2), c1(E)2 = 8, c2(S) = 2c2(P2)+2g(C)−2 = 4b2−6b+6,
c2(E) = 2, K2

S = 2(b − 3)2, KSc1(E) = 4(b − 3) and s2(E) = c1(E)2 − c2(E) = 6. Hence by [17,
Example 2.1 (x)]

i 0 1 2 3
cli(X,L) 6 4b + 8 4b2 + 2b + 6 4b

If b = 1, then (X,L) = (PS(E),H(E)) is a Del Pezzo 3-fold with L3 = 6.

3.2 The case where i = 1

In this subsection, we consider the case where i = 1. Here we assume that n ≥ 3. In this case by
[10, Remark 3.1 (2)] we have

cl1(X,L) = −e1(X,L) + 2e0(X,L) = 2g(X,L) − 2 + 2Ln. (2)

5∆(X, L) denotes the ∆-genus of (X, L) (see [5, (2.2)]).
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Since g(X,L) ≥ 0 and Ln ≥ 1, we see that cl1(X,L) ≥ 0. We also note that c1(X,L) is even.
Next we consider a classification of (X,L) with small cl1(X,L).

(I) First we consider the case where cl1(X,L) = 0.

Proposition 3.2.1 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 0, then
(X,L) is isomorphic to (Pn,OPn(1)).

Proof. If cl1(X,L) = 0, then we have g(X,L) = 0 and Ln = 1 from the equality (2). Therefore
we see from [5, (12.1) Theorem and (5.10) Theorem] that (X,L) is isomorphic to (Pn,OPn(1)).

(II) Next we consider the case where cl1(X,L) = 2.

Proposition 3.2.2 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 2, then
(X,L) is one of the following types.

(a) (Qn,OQn(1)).

(b) A Del Pezzo manifold and Ln = 1. In this case, X is a weighted hypersurface of degree 6 in
the weighted projective space P(3, 2, 1, . . . , 1).

(c) A scroll over an elliptic curve B and Ln = 1. In this case, (X,L) = (PB(E),H(E)), where E
is an ample vector bundle of rank n on B with c1(E) = 1.

Proof. Then by the equality (2) we have (g(X,L), Ln) = (0, 2) or (1, 1). If (X,L) is the first
type, then by [5, (12.1) Theorem and (5.10) Theorem] (X,L) is the type (a) above. If (X,L) is
the last type, then we see from [5, (12.3) Theorem] that (X,L) is either the type (b) or the type
(c) above.

(III) Next we consider the case where cl1(X,L) = 4.

Proposition 3.2.3 Let (X,L) be a polarized manifold of dimension n ≥ 3. If cl1(X,L) = 4, then
(X,L) is one of the following types.

(a) (PP1(E),H(E)), where E ∼= OP1(1) ⊕OP1(1) ⊕OP1(1).

(b) A Del Pezzo manifold and Ln = 2. In this case, X is a double covering of Pn branched along
a smooth hypersurface of degree 4 and L is the pull-back of OPn(1).

(c) A scroll over an elliptic curve B and Ln = 2. In this case, (X,L) = (PB(E),H(E)), where E
is an ample vector bundle of rank n on B with c1(E) = 2.

(d) KX = (3 − n)L and Ln = 1 hold6.

(e) (X,L) is a simple blowing up of (M,A), where M is a double covering of Pn with branch
locus being a smooth hypersurface of degree 6 and A = π∗(OPn(1)), where π : M → Pn is its
double covering.

(f) (PS(E),H(E)), where (S, E) is one of the types 1), 2-i) and 4-b) in [4, (2.25) Theorem].

(g) A hyperquadric fibration over a smooth curve C. In this case C is one of the following types7.

6For some examples of this type, see [3, §2]
7We use Notation 3.1 (2).
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(g.1) C is an elliptic curve, b = 1 and e = 0.

(g.2) C ∼= P1, E ∼= OP1(−1) ⊕OP1(−1) ⊕OP1 ⊕OP1 and b = 5.

(h) (PC(E),H(E)), where C is a smooth curve of genus two and E is an ample vector bundle of
rank n on C with c1(E) = 1.

Proof. By the equality (2) we have (g(X,L), Ln) = (0, 3), (1, 2) or (2, 1).
If (g(X,L), Ln) = (0, 3), then by [5, (12.1) Theorem and (5.10) Theorem] (X,L) is the type (a)
above. If (g(X,L), Ln) = (1, 2), then we see from [5, (12.3) Theorem] that (X,L) is either the
type (b) or (c) above. If (g(X,L), Ln) = (2, 1), then by using a list of a classification of polarized
manifolds with g(X,L) = 2 and Ln = 1 (see [3, (1.10) Theorem, (3.7) and (3.30) Theorem]) we
see that (X,L) is one of the types from (c) to (h) above.

3.3 The case where i = 2

Here we classify polarized manifolds (X,L) such that L is spanned and cl2(X,L) ≤ 15.

Theorem 3.3.1 Let (X,L) be a polarized manifold (X,L) with dim X = n ≥ 3. Assume that L
is spanned and cl2(X,L) ≤ 15. Then (X,L) is one of the following.

(a) (Pn,OPn(1)). In this case cl2(X,L) = 0.

(b) (Qn,OQn(1)). In this case cl2(X,L) = 2.

(c) A scroll over a smooth curve. In this case 3 ≤ cl2(X,L) ≤ 15.

(d) (PS(E),H(E)), where (S, E) ∼= (P2,OP2(1) ⊕OP2(1)). In this case cl2(X,L) = 3.

(e) A Del Pezzo manifold (X,L) with Ln ≥ 2. In this case cl2(X,L) = 12.

Proof. We note that

cl2(X,L) = b2(X,L) − b0(X) + 2(b1(X,L) − b1(X)) + b0(X,L) − b0(X)
= (b2(X,L) − b2(X)) + (b2(X) − b0(X)) + 4(g(X,L) − h1(OX)) + (b0(X,L) − b0(X)).

We also note that b0(X,L) ≥ 1 = b0(X) and b2(X) ≥ b0(X). Since L is spanned, we have
b2(X,L) ≥ b2(X) and g(X,L) ≥ h1(OX) by [10, Proposition 3.3 (2)] and [2, Theorem 7.2.10].
Hence we get the following.

• If 0 ≤ cl2(X,L) ≤ 3, then g(X,L) = h1(OX) holds.

• If 4 ≤ cl2(X,L) ≤ 7, then g(X,L) ≤ h1(OX) + 1 holds.

• If 8 ≤ cl2(X,L) ≤ 11, then g(X,L) ≤ h1(OX) + 2 holds.

• If cl2(X,L) = 12, then g(X,L) ≤ h1(OX) + 2 or Ln = 1 holds.

• If cl2(X,L) = 13, then g(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 holds.

• If cl2(X,L) = 14, then g(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 or b2(X,L) = b2(X) holds.

• If cl2(X,L) = 15, then g(X,L) ≤ h1(OX) + 2 or Ln ≤ 2 or b2(X,L) ≤ b2(X) + 1 holds.

Hence by [11, Theorem 4.1], [16, Theorem 3.1], Exampless 3.1.1, 3.1.3 and 3.1.4 and [17,
Example 2.1], we get the assertion.

Next we consider the case where cl2(X,L) = 16.
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Theorem 3.3.2 Let (X,L) be a polarized manifold (X,L) with dim X = n ≥ 3. Assume that L
is spanned and cl2(X,L) = 16. Then (X,L) is one of the following.

(a) (PC(E),H(E)), where C is a smooth projective curve and E is an ample vector bundle of
rank n on C with c1(E) = 16.

(b) A hyperquadric fibration over an elliptic curve with e = 4, b = −2 and E is ample8.

(c) (PS(E),H(E)) and (S, E) ∼= (PC(F), π∗(G) ⊗ H(F)), where C is an elliptic curve, F and G
are indecomposable vector bundles of rank two on C with degF = 1 and deg G = 1, and
π : PC(F) → C is the projection map.

Proof. By the same argument as the proof of Theorem 3.3.1, either of the following 4 types
occurs.

(i) g(X,L) ≤ h1(OX) + 2. (ii) Ln ≤ 2. (iii) b2(X,L) ≤ b2(X) + 1.
(iv) g(X,L) = h1(OX) + 3, Ln = 3 and b2(X,L) = b2(X) + 2.

If (X,L) satisfies one of the cases (i), (ii), or (iii), then we see from [11, Theorem 4.1], [16,
Theorem 3.1], Examples 3.1.1, 3.1.3 and 3.1.4, and [17, Example 2.1] that (X,L) is one of the
types (a), (b) and (c) in Theorem 3.3.2. So we may assume that the case (iv) occurs. Then
∆(X,L) = n + Ln − h0(L) ≤ n + 3 − (n + 1) ≤ 2.

Claim 3.1 h1(OX) = 0 holds.

Proof. If ∆(X,L) ≤ 1, then by [5, (5.10) Theorem and (6.7) Corollary] we get the assertion.
So we may assume that ∆(X,L) = 2. Then since L is spanned, h0(L) = n + 1 and Ln = 3, the
morphism X → Pn defined by |L| is a triple covering. So by [27, Theorem 7.1.15], we get the
assertion.

Hence g(X,L) = 3. Since Bs|L| = ∅, we see from Example 3.1.2 that this case (iv) cannot occur.

3.4 The case where i = 3

Here we consider a classification of (X,L) such that L is spanned and cl3(X,L) ≤ 8.

Theorem 3.4.1 Let (X,L) be a polarized manifold with dim X = n ≥ 3. Assume that L is
spanned and cl3(X,L) ≤ 8. Then (X,L) is one of the following.

(a) (Pn,OPn(1)). In this case cl3(X,L) = 0.

(b) A scroll over a smooth curve. In this case cl3(X,L) = 0.

(c) (Qn,OQn(1)). In this case cl3(X,L) = 2.

(d) (P3,OP3(2)). In this case cl3(X,L) = 4.

(e) A simple blowing up of (P3,OP3(2)). In this case cl3(X,L) = 4.

(f) (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)). In this case cl3(X,L) = 4.

(g) (P2 × P2,⊗2
i=1p

∗
iOP2(1)). In this case cl3(X,L) = 6.

(h) A hyperquadric fibration over a smooth curve C, and one of the following holds9.

8We use Notation 3.1 (2).
9We use Notation 3.1 (2).
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(h.1) g(C) = 1, n = 3, L3 = 6, e = 4, b = −2, and E is ample. In this case cl3(X,L) = 8.

(h.2) g(C) = 0, n = 3, L3 = 9, e = 6, b = −3 and E ∼= OP1(1) ⊕ OP1(1) ⊕ OP1(2) ⊕ OP1(2)
(see [3, (3.30) Theorem 9)]). In this case cl3(X,L) = 8.

(i) (PS(E),H(E)) and (S, E) is one of the following.

(i.1) (P2,OP2(1) ⊕OP2(1)). In this case cl3(X,L) = 0.

(i.2) (P2,OP2(1) ⊕OP2(2)). In this case cl3(X,L) = 4.

(i.3) (Q2,OQ2(1) ⊕OQ2(1)). In this case cl3(X,L) = 4.

(i.4) S is a double covering f : S → P2 branched along a smooth hypersurface of degree 2,
and E = f∗(OPn(1)) ⊕ f∗(OPn(1)). In this case cl3(X,L) = 4.

(i.5) (P2, TP2). In this case cl3(X,L) = 6.

(i.6) (PC(F), π∗(G)⊗H(F)), where C is an elliptic curve, F and G are indecomposable vector
bundles of rank two on C with degF = 1 and deg G = 1, and π : PC(F) → C is the
projection map. In this case cl3(X,L) = 8.

(i.7) S is a double covering f : S → P2 branched along a smooth hypersurface of degree 4,
and E ∼= f∗(OP2(1)) ⊕ f∗(OP2(1)). In this case cl3(X,L) = 8.

(i.8) (P1
α×P1

β , [Hα +2Hβ ]⊕ [Hα +Hβ ]) and Hα (resp. Hβ) is the ample generator of Pic(Pα)
(resp. Pic(Pβ)). In this case cl3(X,L) = 8.

(i.9) S is the blowing up of P2 at a point and E ∼= [2H − E]⊕2, where H is the pull-back of
OP2(1) and E is the exceptional divisor. In this case cl3(X,L) = 8.

Proof. We note that

cl3(X,L) = b3(X,L) − b1(X) + 2(b2(X,L) − b2(X)) + b1(X,L) − b1(X)
= (b3(X,L) − b3(X)) + (b3(X) − b1(X)) + 2(b2(X,L) − b2(X)) + 2(g(X,L) − h1(OX)).

We also note that cl3(X,L) is even and b3(X) ≥ b1(X). Since L is spanned, we have b3(X,L) ≥
b3(X), b2(X,L) ≥ b2(X) and g(X,L) ≥ h1(OX) by [10, Proposition 3.3 (2)] and [2, Theorem
7.2.10]. Hence we get the following.

• If 0 ≤ cl3(X,L) ≤ 2, then b2(X,L) ≤ b2(X) + 1 holds.

• If cl3(X,L) = 4, then b2(X,L) ≤ b2(X) + 1 or g(X,L) = h1(OX) holds.

• If cl3(X,L) = 6, then b2(X,L) ≤ b2(X) + 1 or g(X,L) ≤ h1(OX) + 1 holds.

• If cl3(X,L) = 8, then b2(X,L) ≤ b2(X) + 1 or g(X,L) ≤ h1(OX) + 2 holds.

By [11, Theorem 4.1], [16, Theorem 3.1], Examples 3.1.1 and 3.1.4, and [17, Example 2.1] we get
the assertion10.

3.5 The case where i = 4

Here we consider a classification of (X,L) such that L is spanned (resp. very ample) and cl4(X,L) ≤
1 (resp. cl4(X,L) = 2).

Theorem 3.5.1 Let (X,L) be a polarized manifold (X,L) with dim X = n ≥ 4. Assume that L
is spanned and cl4(X,L) ≤ 1. Then (X,L) is one of the following.

10We note that the type (2-1) (resp. (2-2), (2-3), (3-1) and (3-2)) in [8, Theorem 3.3] corresponds to (i.8) (resp.
(i.9), (i.6), (h.1) and (h.2)).
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(a) (Pn,OPn(1)). In this case cl4(X,L) = 0.

(b) A scroll over a smooth curve. In this case cl4(X,L) = 0.

Proof. We note that the following equality holds.

cl4(X,L) = b4(X,L) − b2(X) + 2(b3(X,L) − b3(X)) + b2(X,L) − b2(X)
= b4(X,L) − b4(X) + (b4(X) − b2(X)) + 2(b3(X,L) − b3(X)) + b2(X,L) − b2(X).

Since L is spanned, we see from [10, Proposition 3.3 (2)] that b4(X,L) ≥ b4(X), b3(X,L) ≥ b3(X)
and b2(X,L) ≥ b2(X) hold. Furthermore by the strong Lefschetz theorem, we have b4(X) ≥ b2(X).
Hence if cl4(X,L) ≤ 1, then b2(X,L) ≤ b2(X) + 1. Since n ≥ 4, we can easily check that (X,L) is
one of the above types by [11, Theorem 4.1], [16, Theorem 3.1] and [17, Example 2.1].

Remark 3.5.1 If L is spanned, then there does not exist (X,L) with cl4(X,L) = 1.

Theorem 3.5.2 Let (X,L) be a polarized manifold (X,L) with dim X = n ≥ 5. Assume that L
is very ample and cl4(X,L) = 2. Then (X,L) is (Qn,OQn(1)).

Proof. By the same argument as above, (X,L) with cl4(X,L) = 2 satisfies one of the following.

(I) b2(X,L) ≤ b2(X) + 1. (II) b4(X,L) = b4(X).

(I) If b2(X,L) ≤ b2(X) + 1 holds, then by [11, Theorem 4.1], [16, Theorem 3.1] and [17, Example
2.1] we see that (X,L) with cl4(X,L) = 2 is (Qn,OQn(1)).
(II) Next we assume that b4(X,L) = b4(X) holds. Then by [11, Theorem 4.2], we see that (X,L)
is one of the following types since we assume that n ≥ 5.

(II.1) (Pn,OPn(1)).

(II.2) A scroll over a smooth projective curve.

(II.3) (PS(E),H(E)), where S is a smooth projective surface and E is an ample vector bundle of
rank n − 1 on S.

(II.4) X is the Plücker embedding of G(2, 5) and L = OX(1). In this case n = 6.

(II.5) X is a nonsingular hyperplane section of the Plücker embedding of G(2, 5) in P9 and L =
OX(1). In this case n = 5.

Then by calculating cl4(X,L), we see from [17, Example 2.1] that cl4(X,L) = 0 (resp. 0, c2(E),
5 and 5) if (X,L) is the type (II.1) (resp. (II.2), (II.3), (II.4) and (II.5)). Hence we find that the
type (II.3) is possible and in this case c2(E) = 2. But by [28, Theorem 6.1] and [23], the rank of E
is two and so we have n = 3. This contradicts the assumption that n ≥ 5.
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