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Abstract

Let X be a smooth projective variety of dimension n, let E be an ample vector bundle of
rank r on X with 1 ≤ r ≤ n. Then we are going to introduce some invariants of (X, E) which
are considered to be a generalization of invariants of polarized manifolds we introduced before.
Moreover we will study some properties of these and some relationships between these.

1 Introduction

Let X be a projective variety of dimension n defined over the field of complex numbers, and let
L be an ample line bundle on X. Then the pair (X,L) is called a polarized variety. Moreover if X
is smooth, then (X,L) is called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The sectional genus
g(X,L) of (X,L) is one of the well-known invariants of (X,L). In [3] (resp. [5]) we defined the
notion of the ith sectional geometric genus gi(X,L) (resp. the ith sectional H-arithmetic genus
χH

i (X,L)) of (X,L) for every integer i with 0 ≤ i ≤ n. Here we explain the meaning of these
invariants if X is smooth, L is base point free and i is an integer with 1 ≤ i ≤ n − 1. Let
H1, . . . ,Hn−i be general members of |L|. We put Xn−i := H1 ∩ . . . ∩Hn−i. Then Xn−i is smooth
with dimXn−i = i, and we can show that gi(X,L) = hi(OXn−i) and χH

i (X,L) = χ(OXn−i). (Here
we call χ(OY ) the H-arithmetic genus of a projective variety Y (see also [5, Definition 1.5]).)

These induce the notion of the ith sectional invariant of (X,L) associated with an invariant.

Definition 1.1 Let (X,L) be a polarized manifold of dimension n. Let I(Y ) (or I) be an invariant
of a smooth projective variety Y of dimension i, where i is an integer with 0 ≤ i ≤ n. Then an
invariant Fi(X,L) of (X,L) is called the ith sectional invariant of (X,L) associated with the
invariant I if Fi(X,L) = I(Xn−i) under the assumption that Bs|L| = ∅.

The ith sectional geometric genus (resp. the ith sectional H-arithmetic genus) is the ith sec-
tional invariant of (X,L) associated with the geometric genus (resp. the H-arithmetic genus).
By the definition of the ith sectional invariants, the ith sectional invariants are expected to re-
flect properties of i-dimensional geometry. So we can expect that we are able to find interesting
properties of (X,L) by using its ith sectional invariants.

In [6], we defined other ith sectional invariants, that is, the ith sectional Euler number ei(X,L),
the ith sectional Betti number bi(X,L), and the ith sectional Hodge number hj,i−j

i (X,L) of type
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(j, i − j) of (X,L) (see Definition 2.2.1 below) and we studied some properties of these. The
meaning of these invariants is the following. Assume that X is smooth, L is base point free and i
is an integer with 1 ≤ i ≤ n − 1. Let H1, . . . ,Hn−i be general members of |L|. We put Xn−i :=
H1 ∩ . . . ∩ Hn−i. Then Xn−i is smooth with dim Xn−i = i, and we see that ei(X,L) = e(Xn−i),
bi(X,L) = hi(Xn−i, C) and hj,i−j

i (X,L) = hj,i−j(Xn−i).
The main purpose of this paper is to define a vector bundle version of these invariants as a

generalization, and to give a frame of investigation of generalized polarized manifolds by using
sectional invariants defined in this paper. In future, we will give detailed investigations such as
classification of (multi-)generalized polarized manifolds by their sectional invariants.

Let X be a smooth projective variety with dim X = n and let E be an ample vector bundle
on X with rank E = r. We assume that r ≤ n. In Section 3, we will define the cr-sectional
H-arithmetic genus χH

n,r(X, E), the cr-sectional geometric genus gn,r(X, E), the cr-sectional Euler
number en,r(X, E), the cr-sectional Betti number bn,r(X, E) and the cr-sectional Hodge number
hj,n−r−j

n,r (X, E) of type (j, n − r − j) of (X, E).
Moreover in Section 4 we will study fundamental properties of these, which will be useful for

investigations by these invariants. In Section 5, as a special case, we consider the case where E is a
direct sum of ample line bundles. In 5.1, we will define the cr-sectional invariants of multi-polarized
manifolds (see Definition 5.1.1). In 5.2, we will show that some invariants defined before are special
cases of these invariants (see Propositions 5.2.1 and 5.2.2). In 5.3, we will study some properties
of the sectional Euler numbers, the sectional Betti numbers and the sectional Hodge numbers of
multi-polarized manifolds. In Section 6, we will propose some problems and conjectures.

Finally we note that in a forthcoming paper [10], we will make a study of (multi-)polarized
manifolds by using invariants which will be defined in this paper.

2 Preliminaries

In this section, let X be a smooth projective variety of dimension n unless otherwise mensioned.

2.1 Some notation

In 2.1, we will give some notation which will be used later.

Definition 2.1.1 Let F be a vector bundle on X. Then for every integer j with j ≥ 0, the
jth Segre class sj(F) of F is defined by the following equation: ct(F∨)st(F) = 1, where F∨ :=
HomOX

(F ,OX), ct(F∨) is the Chern polynomial of F∨ and st(F) =
∑

j≥0 sj(F)tj .

Remark 2.1.1 (a) Let F be a vector bundle on X. Let s̃j(F) be the jth Segre class which is
defined in [12, Chapter 3]. Then sj(F) = s̃j(F∨).
(b) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)

Definition 2.1.2 Let E (resp. L) be an ample vector bundle (resp. an ample line bundle) on
X. Then the pair (X, E) (resp. (X,L)) is called a generalized polarized manifold (resp. polarized
manifold).

Definition 2.1.3 Let (X, E) be an n-dimensional generalized polarized manifold with rank E = r.
We assume that r ≤ n. For every integer p with 0 ≤ p ≤ n − r we set

Cn,r
p (X, E) :=

p∑
k=0

ck(X)sp−k(E∨).
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Remark 2.1.2 Let (X, E) be a generalized polarized manifold of dimension n. Let r be the rank
of E with r ≤ n − 1. Assume that there exists a section of H0(E) whose zero locus Z is smooth
and dimZ = n − r. Then there is an exact sequence 0 → TZ → TX |Z → E|Z → 0 and we have
ct(TX |Z) = ct(TZ)ct(E|Z), where TX (resp. TZ) is the tangent bundle of X (resp. Z). Hence we
have ct(Z) = ct((TX)Z)ct(E|Z)−1 = ct((TX)Z)st(E∨|Z). Therefore we get

ci(Z) =
i∑

j=0

cj(X)si−j(E∨)|Z =
i∑

j=0

cj(X)si−j(E∨)cr(E) = Cn,r
i (X, E)cr(E).

In particular, we have KZ = (KX + c1(E))cr(E).

2.2 Sectional invariants of polarized manifolds

In 2.2, we will review the sectional invariants of polarized manifolds.

Notation 2.2.1 (1) Let (X,L) be a polarized manifold of dimension n. Then the Euler-Poincaré
characteristic χ(L⊗t) of L⊗t is a polynomial in t of degree n (see [13, chapter I, §1]), and we
put

χ(L⊗t) =
n∑

j=0

χj(X,L)
(

t + j − 1
j

)
.

(2) Let Y be a smooth projective variety of dimension i ≥ 1, let TY be the tangent bundle of Y
and let ΩY be the dual bundle of TY . For every integer j with 0 ≤ j ≤ i, we put

hi,j(c1(Y ), · · · , ci(Y )) := χ(Ωj
Y ) =

∫
Y

ch(Ωj
Y )Td(TY ).

(Here ch(Ωj
Y ) (resp. Td(TY )) denotes the Chern character of Ωj

Y (resp. the Todd class of
TY ). See [12, example 3.2.3 and example 3.2.4].)

(3) Let X be a smooth projective variety of dimension n. For every integers i and j with
0 ≤ j ≤ i ≤ n, we put

H1(X; i, j) :=


i−j−1∑
s=0

(−1)shs(Ωj
X) if j ̸= i,

0 if j = i,

H2(X; i, j) :=


j−1∑
t=0

(−1)i−tht(Ωi−j
X ) if j ̸= 0,

0 if j = 0.

Definition 2.2.1 ([3], [5] and [6]) Let (X,L) be a polarized manifold of dimension n, and let i
and j be integers with 0 ≤ j ≤ i ≤ n. (Here we use Notation 2.2.1.)

(i) The ith sectional H-arithmetic genus χH
i (X,L) of (X,L) is defined as follows:

χH
i (X,L) := χn−i(X,L).

(ii) The ith sectional geometric genus gi(X,L) of (X,L) is defined as follows:

gi(X,L) := (−1)i(χn−i(X,L) − χ(OX)) +
n−i∑
j=0

(−1)n−i−jhn−j(OX).
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(iii) The ith sectional Euler number ei(X,L) of (X,L) is defined by the following:

ei(X,L) := Cn,1
i (X,L)Ln−i.

(iv) The ith sectional Betti number bi(X,L) of (X,L) is defined by the following:

bi(X,L) :=


e0(X,L) if i = 0,

(−1)i

ei(X,L) −
i−1∑
j=0

2(−1)jhj(X, C)

 if 1 ≤ i ≤ n.

(v) The ith sectional Hodge number hj,i−j
i (X,L) of type (j, i − j) of (X,L) is defined by the

following:

hj,i−j
i (X,L) := (−1)i−j

{
wj

i (X,L) − H1(X; i, j) − H2(X; i, j)
}

,

where

wj
i (X,L) :=

{
hi,j(C

n,1
1 (X,L), · · · , Cn,1

i (X,L))Ln−i, if i > 0,
Ln, if i = 0.

Remark 2.2.1 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
1 ≤ i ≤ n− 1. Assume that there exists a sequence of smooth projective varieties X = X0 ⊃ X1 ⊃
· · · ⊃ Xn−i such that dimXk = n − k and Xk ∈ |L|Xk−1 | for 1 ≤ k ≤ n − i. Then

χH
i (X,L) = χ(OXn−i), gi(X,L) = hi(OXn−i) = h0(Ωi

Xn−i
)

ei(X,L) = e(Xn−i), 1 bi(X,L) = hi(Xn−i, C)

hj,i−j
i (X,L) = hi−j(Ωj

Xn−i
) for every integer j with 0 ≤ j ≤ i.

3 Sectional invariants of generalized polarized manifolds

In this section, we will define sectional invariants of generalized polarized manifolds, which are
thought to be a generalization of sectional invariants of polarized manifolds stated in 2.2. In this
section we assume the following unless otherwise mentioned.

Setting 3.1 Let (X, E) be an n-dimensional generalized polarized manifold with rank E = r ≤ n.

The following fact will be used later.

Fact 3.1 There exists a very ample line bundle A on X such that E ⊗ A⊗t is ample and spanned
by any positive integer t. We set E(t) := E ⊗ A⊗t. Furthermore there exists a general section of
H0(E(t)) whose zero locus Z(t) is smooth with dimZ(t) = n − r.

3.1 cr-sectional H-arithmetic genera and cr-sectional Euler numbers

In 3.1, we will define the cr-sectional H-arithmetic genus (resp. the cr-sectional Euler number)
which is a generalization of the sectional H-arithmetic genus (resp. the sectional Euler number)
of polarized manifolds.

1e(Xn−i) denotes the Euler number of Xn−i
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Definition 3.1.1 The cr-sectional H-arithmetic genus χH
n,r(X, E) and the cr-sectional Euler num-

ber en,r(X, E) of (X, E) are defined by the following2:

χH
n,r(X, E) := tdn−r

(
Cn,r

1 (X, E), · · · , Cn,r
n−r(X, E)

)
cr(E).

en,r(X, E) := Cn,r
n−r(X, E)cr(E).

Remark 3.1.1 If r = n, then we see that χH
n,r(X, E) = cn(E) and en,r(X, E) = cn(E).

The following shows the geometric meaning of these invariants.

Proposition 3.1.1 Assume that r ≤ n − 1 and there exists a smooth projective variety Z such
that dimZ = n − r and Z is the zero locus of an element of H0(E). Then

χH
n,r(X, E) = χ(OZ), en,r(X, E) = e(Z).

Proof. First we consider χH
n,r(X, E). Then by Remark 2.1.2 we have

χH
n,r(X, E) = tdn−r

(
Cn,r

1 (X, E), · · · , Cn,r
n−r(X, E)

)
cr(E)

= tdn−r (c1(Z), · · · , cn−r(Z))
= χ(OZ).

Next we consider en,r(X, E). By Remark 2.1.2 we see that

en,r(X, E) = Cn,r
n−r(X, E)cr(E) = cn−r(Z) = e(Z).

Hence we get the assertion.

Proposition 3.1.2 χH
n,r(X, E) and en,r(X, E) are integers.

Proof. By definition we see that en,r(X, E) is an integer. Thus we will show that χH
n,r(X, E)

is an integer. If n = r, then by Remark 3.1.1 we get the assertion. So we assume that r ≤ n − 1.
Here we use Fact 3.1 and notation in Fact 3.1. Then by [12, Example 3.2.2], we see that for every
integer k with 1 ≤ k ≤ n − r

ck(E(t)) = ck(E) +
k−1∑
j=0

(
r − j

k − j

)
cj(E)c1(A)k−jtk−j .

Therefore by Definition 3.1.1, we have χH
n,r(X, E(t)) − χH

n,r(X, E) ∈ Q[t]. We put

f(t) := χH
n,r(X, E(t)) − χH

n,r(X, E).

Then there exists a positive integer t1 such that f(t1) is an integer. By Fact 3.1 and Proposition
3.1.1 we infer that χH(X, E(t1)) is an integer. Hence χH

n,r(X, E) is an integer.

3.2 cr-sectional geometric genera and cr-sectional Betti numbers

Definition 3.2.1 The cr-sectional geometric genus gn,r(X, E) and the cr-sectional Betti number
bn,r(X, E) of (X, E) are defined by the following:

gn,r(X, E) := (−1)n−rχH
n,r(X, E) + (−1)n−r+1χ(OX) +

r∑
k=0

(−1)r−khn−k(OX).

bn,r(X, E) :=

{
(−1)n−r

(
en,r(X, E) −

∑n−r−1
j=0 2(−1)jhj(X, C)

)
, if r < n,

en,n(X, E), if r = n.

2Here tdn−r means the Todd polynomial of weight n − r (see [2, Definition 1.4 (1)]).
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Remark 3.2.1 (i) If r = n, then we see that gn,r(X, E) = cn(E) and bn,r(X, E) = cn(E).
(ii) The invariant gn,r(X, E) in Definition 3.2.1 is equal to the invariant gn−r(X, E) in [2, Definition
2.1].

By definition and Proposition 3.1.2, we get the following.

Proposition 3.2.1 gn,r(X, E) and bn,r(X, E) are integers.

Moreover we see that gn,r(X, E) and bn,r(X, E) have the following property.

Proposition 3.2.2 Assume that r ≤ n − 1 and there exists a smooth projective variety Z such
that dimZ = n − r and Z is the zero locus of an element of H0(E). Then

gn,r(X, E) = hn−r(OZ), bn,r(X, E) = hn−r(Z, C).

Proof. First we consider the cr-sectional geometric genus. Then by [14, 1.3 Theorem], [15,
Theorem 1.1 (1.1.3) and (1.1.4)] and Proposition 3.1.1 we have

gn,r(X, E) = (−1)n−rχH
n,r(X, E) − (−1)n−r

n−r−1∑
j=0

(−1)jhj(OX)

= (−1)n−rχ(OZ) − (−1)n−r
n−r−1∑

j=0

(−1)jhj(OZ)

= hn−r(OZ).

Next we consider the cr-sectional Betti number. By Proposition 3.1.1 we get en,r(X, E) = e(Z).
By [14, 1.3 Theorem], we obtain hj(X, C) = hj(Z, C) for every integer j with j ≤ n − r − 1. Here
we note that hj(Z, C) = h2(n−r)−j(Z, C) by the Poincaré duality. Hence

bn,r(X, E) = (−1)n−r

en,r(X, E) − 2
n−r−1∑

j=0

(−1)jhj(X, C)


= (−1)n−r

e(Z) − 2
n−r−1∑

j=0

(−1)jhj(Z, C)


= hn−r(Z, C).

Hence the assertion is obtained.

Remark 3.2.2 If r = n− 1, then gn,n−1(X, E) is the curve genus of (X, E) (see e.g. [1] and [16]).

3.3 cr-sectional Hodge numbers

Definition 3.3.1 The cr-sectional Hodge number hj,n−r−j
n,r (X, E) of type (j, n− r− j) of (X, E) is

defined by the following3:

hj,n−r−j
n,r (X, E) := (−1)n−r−j

{
wj

n,r(X, E) − H1(X;n − r, j) − H2(X;n − r, j)
}

.

Here we set

wj
n,r(X, E) :=

{
hn−r,j(C

n,r
1 (X, E), · · · , Cn,r

n−r(X, E))cr(E), if r < n,
cn(E), if r = n.

for every integer j with 0 ≤ j ≤ n − r.
3See Notation 2.2.1 (2).
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Remark 3.3.1 If r = n, then we see that h0,0
n,n(X, E) = cn(E).

Proposition 3.3.1 Assume that r ≤ n − 1 and there exists a smooth projective variety Z such
that dimZ = n − r and Z is the zero locus of an element of H0(E). Then

hj,n−r−j
n,r (X, E) = hj,n−r−j(Z)

for every integer j with 0 ≤ j ≤ n − r.

Proof. First we note that H1(X;n − r, j) = H1(Z;n − r, j) and H2(X;n − r, j) = H2(Z;n −
r, j) by [14, 1.3 Theorem], [15, Theorem 1.1 (1.1.3) and (1.1.4)] since 0 ≤ j ≤ n − r. We also
note that wj

n,r(X, E) = hn−r,j(C
n,r
1 (X, E), · · · , Cn,r

n−r(X, E))cr(E) = hn−r,j(c1(Z), · · · , cn−r(Z)) =
χ(Ωj

Z). Hence by definition we get

hj,n−r−j
n,r (X, E) = (−1)n−r−j

{
wj

n,r(X, E) − H1(X;n − r, j) − H2(X;n − r, j)
}

= (−1)n−r−j
{

χ(Ωj
Z) − H1(Z;n − r, j) − H2(Z;n − r, j)

}
= hj,n−r−j(Z).

Therefore we get the assertion.

Proposition 3.3.2 hj,n−r−j
n,r (X, E) is an integer for every integer j with 0 ≤ j ≤ n − r.

Proof. If r = n, then by Remark 3.3.1, we get the assertion. So we assume that r ≤ n − 1.
Here we use Fact 3.1 and notation in Fact 3.1. Here we note that by [12, Example 3.1.1] we have

sj(E(t)∨) =
j∑

k=0

(−1)j−k

(
r − 1 + j

r − 1 + k

)
sk(E∨)c1(A)j−ktj−k

(see also Remark 2.1.1 (a)), the following equality holds.

wj
n,r(X, E(t))

=
n−r∑
k=1


 ∑

(l1,···,ln−r,m1,···,mn−r)∈A(k)

ql1,···,ln−r,m1,···,mn−r
c1(X)l1 · · · cn−r(X)ln−rs1(E∨)m1 · · · sn−r(E∨)mn−r


×(tA)k

}
cr(E) + wj

n,r(X, E),

where ql1,···,ln−r,m1,···,mn−r ∈ Q and

A(k) :=

{
(l1, · · · , ln−r, m1, · · · ,mn−r) ∈ Z⊕2n−2r

≥0

∣∣∣∣∣
n−r∑
u=1

ulu +
n−r∑
v=1

vmv = n − r − k

}
.

Then there exists a positive integer s such that

sql1,···,ln−r,m1,···,mn−r ∈ Z

for every (l1, · · · , ln−r,m1, · · · ,mn−r). Therefore wj
n,r(X, E(s)) − wj

n,r(X, E) is an integer. Since
E(s) is generated by its global sections, by Fact 3.1 and Proposition 3.3.1 we see that wj

n,r(X, E(s))
is also an integer. Therefore wj

n,r(X, E) ∈ Z and we get the assertion by the definition of
hj,n−r−j

n,r (X, E).
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4 Fundamental properties of these invariants

In this section, we will study fundamental properties of invariants defined above. In particular,
we will consider some relations among them. First of all, we can prove the following theorem in
general.

Theorem 4.1 Let (X, E) be a generalized polarized manifold of dimension n with rank E = r.
Assume that r ≤ n − 1. For every integer j with 0 ≤ j ≤ n − r, we get the following.

(i) bn,r(X, E) =
∑n−r

k=0 hk,n−r−k
n,r (X, E).

(ii) hj,n−r−j
n,r (X, E) = hn−r−j,j

n,r (X, E).
(iii) hn−r,0

n,r (X, E) = h0,n−r
n,r (X, E) = gn,r(X, E).

(iv) If n − r is odd, then bn,r(X, E) is even.

Proof. We use Fact 3.1 and notation in Fact 3.1. Then by Propositions 3.1.1, 3.2.2 and 3.3.1
we have bn,r(X, E(t)) = hn−r(Z(t), C), hj,n−r−j

n,r (X, E(t)) = hj,n−r−j(Z(t)), and gn,r(X, E(t)) =
hn−r(OZ(t)).

By the Hodge theory, we get

hj,n−r−j(Z(t)) = hn−r−j,j(Z(t))
hn−r,0(Z(t)) = h0,n−r(Z(t)) = hn−r(OZ(t))

hn−r(Z(t), C) =
n−r∑
j=0

hj,n−r−j(Z(t)).

Hence for any positive integer t, we see that

hj,n−r−j
n,r (X, E(t)) = hn−r−j,j

n,r (X, E(t)) (1)

hn−r,0
n,r (X, E(t)) = h0,n−r

n,r (X, E(t)) = gn,r(X, E(t)) (2)

bn,r(X, E(t)) =
n−r∑
j=0

hj,n−r−j
n,r (X, E(t)). (3)

Since bn,r(X, E(t)), hj,n−r−j
n,r (X, E(t)), hn−r−j,j

n,r (X, E(t)) and gn,r(X, E(t)) are polynomials in t,
we see that (1), (2) and (3) are true for any integer t. In particular, by putting t = 0, we get the
assertion (i), (ii) and (iii). Furthermore by (i) and (ii), we can prove that bn,r(X, E) is even if n− r
is odd. Hence we get the assertion.

Remark 4.1 (1) In Theorem 4.1, we only assume that E is ample (not necessarily generated by
its global sections).

(2) Let Y be a smooth projective variety of dimension n − r. Then

(2.1) (i) in Theorem 4.1 corresponds to hn−r(Y, C) =
∑n−r

j=0 hj,n−r−j(Y ).

(2.2) (ii) in Theorem 4.1 corresponds to hj,n−r−j(Y ) = hn−r−j,j(Y ) for every integer j with
0 ≤ j ≤ n − r.

(2.3) (iii) in Theorem 4.1 corresponds to hn−r,0(Y ) = h0,n−r(Y ) = hn−r(OY ).

(2.4) (iv) in Theorem 4.1 corresponds to the following fact: If n − r is odd, then hn−r(Y, C)
is even.

(3) If n − r = 1, then by (i) and (iii) in Theorem 4.1

bn,r(X, E) = h1,0
n,r(X, E) + h0,1

n,r(X, E) = 2gn,r(X, E).
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Next we prove some inequalities under a special assumption.

Proposition 4.1 Let (X, E) be a generalized polarized manifold of dimension n with 1 ≤ r ≤ n−1,
where r = rank E. Assume that there exist a smooth projective variety Z of dimension n − r such
that Z is the zero locus of an element of H0(E). Then for every integer j with 1 ≤ j ≤ n − r the
following hold.

(i) bn,r(X, E) ≥ 2gn,r(X, E).

(ii) bn,r(X, E) ≥ hn−r(X, C).

(iii) hj,n−r−j
n,r (X, E) ≥ hj,n−r−j(X).

(iv) If n − r = 2k, then hk,k
n,r(X, E) ≥ 1.

Proof. (i) By Propositions 3.2.2, 3.3.1 and Theorem 4.1 (i), we obtain

bn,r(X, E) =
n−r∑
k=0

hk,n−r−k
n,r (X, E) =

n−r∑
k=0

hk,n−r−k(Z)

≥ h0,n−r(Z) + hn−r,0(Z) = 2hn−r(OZ) = 2gn,r(X, E).

(ii) By Proposition 3.2.2 and [14, 1.3 Theorem], we obtain bn,r(X, E) = hn−r(Z, C) ≥ hn−r(X, C).
(iii) For every integer j with 0 ≤ j ≤ i, by Proposition 3.3.1 and [14, 1.3 Theorem], we get
hj,n−r−j

n,r (X, E) = hj,n−r−j(Z) ≥ hj,n−r−j(X).
(iv) By Proposition 3.3.1, we have hk,k

n,r(X, E) = hk,k(Z) ≥ 1 and we get the assertion.

5 Sectional invariants of multi-polarized manifolds

In this section, we consider the case where an ample vector bundle E is a direct sum of ample line
bundles. First we define the following notion.

Definition 5.1 Let L1, . . . , Lm (resp. E1, . . . , Em) be ample line bundles (resp. ample vector
bundles with rank Ei = ri) on X. Then (X,L1, . . . , Lm) (resp. (X, E1, . . . , Em)) is called a
multi-polarized manifold of type m (resp. multi-generalized polarized manifold of type m with
rank (r1, . . . , rm)).

5.1 Definition

Here we will define sectional invariants of multi-polarized manifolds.

Definition 5.1.1 Let (X,L1, . . . , Ln−i) be a generalized polarized manifold of dimension n, where
i is an integer with 0 ≤ i ≤ n − 1. Then we define the ith sectional H-arithmetic genus
χH

i (X,L1, . . . , Ln−i), the ith sectional Euler number ei(X,L1, . . . , Ln−i), the ith sectional geo-
metric genus gi(X,L1, . . . , Ln−i), the ith sectional Betti number bi(X,L1, . . . , Ln−i) and for every
integer j with 0 ≤ j ≤ i, the ith sectional Hodge number hj,i−j

i (X,L1, . . . , Ln−i) of type (j, i − j)
are defined as follows.

χH
i (X,L1, . . . , Ln−i) := χH

n,n−i(X,L1 ⊕ · · · ⊕ Ln−i),
gi(X,L1, . . . , Ln−i) := gn,n−i(X,L1 ⊕ · · · ⊕ Ln−i),
ei(X,L1, . . . , Ln−i) := en,n−i(X,L1 ⊕ · · · ⊕ Ln−i),
bi(X,L1, . . . , Ln−i) := bn,n−i(X,L1 ⊕ · · · ⊕ Ln−i),

hj,i−j
i (X,L1, . . . , Ln−i) := hj,i−j

n,n−i(X,L1 ⊕ · · · ⊕ Ln−i).
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First we prove the following lemma.

Lemma 5.1.1 Let (X, E1, . . . , Em) be a multi-generalized polarized manifold of type m with rank
(r1, . . . , rm) and let r =

∑m
i=1 ri. Assume that r ≤ n − 1 and there exists a sequence of smooth

projective varieties Z0 ⊃ Z1 ⊃ · · · ⊃ Zm such that dimZj = n −
∑j

k=1 rk and Zj is the zero locus
of an element of H0(Ej |Zj−1) for every integer j with 1 ≤ j ≤ m, where Z0 := X. Then

χH
n,r(X, E1 ⊕ · · · ⊕ Em) = χH

n−r1,r−r1
(Z1, E2|Z1 ⊕ · · · ⊕ Em|Z1)

...
= χH

n−r+rm,rm
(Zm−1, Em|Zm−1)

= χ(OZm),
en,r(X, E1 ⊕ · · · ⊕ Em) = en−r1,r−r1(Z1, E2|Z1 ⊕ · · · ⊕ Em|Z1)

...
= en−r+rm,rm

(Zm−1, Em|Zm−1)
= e(Zm),

gn,r(X, E1 ⊕ · · · ⊕ Em) = gn−r1,r−r1(Z1, E2|Z1 ⊕ · · · ⊕ Em|Z1)
...
= gn−r+rm,rm(Zm−1, Em|Zm−1)
= hn−r(OZm

),
bn,r(X, E1 ⊕ · · · ⊕ Em) = bn−r1,r−r1(Z1, E2|Z1 ⊕ · · · ⊕ Em|Z1)

...
= bn−r+rm,rm(Zm−1, Em|Zm−1)
= hn−r(Zm, C),

hj,n−r−j
n,r (X, E1 ⊕ · · · ⊕ Em) = h

j,(n−r1)−(r−r1)−j
n−r1,r−r1

(Z1, E2|Z1 ⊕ · · · ⊕ Em|Z1)
...
= h

j,(n−r+rm)−rm−j
n−r+rm,rm

(Zm−1, Em|Zm−1)

= hj,n−r−j(Zm).

Proof. First we prove the following lemma.

Claim 5.1.1 Let X be a smooth projective variety of dimension n and let F and G be ample vector
bundles on X with rank F = r and rank G = s. Assume that there exists a smooth projective variety
Z of dimension n− r such that Z is the zero locus of an element of H0(F). Then for every integer
j with 0 ≤ j ≤ n − r − s

Cn,r+s
j (X,F ⊕ G)cr+s(F ⊕ G) = Cn−r,s

j (Z,GZ)cs(GZ).

Proof. This can be proved by the following equality.

Cn,r+s
j (X,F ⊕ G)cr+s(F ⊕ G) =

{
j∑

k=0

ck(X)sj−k((F ⊕ G)∨)

}
cr(F)cs(G)

=

{
j∑

k2=0

(
k2∑

k1=0

ck1(X)sk2−k1(F∨)

)
(sj−k2(G∨))

}
cr(F)cs(G)
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=
j∑

k2=0

ck2(Z)(sj−k2(G∨
Z))cs(GZ) = Cn−r,s

j (Z,GZ)cs(GZ).

By Definitons 3.1.1, 3.2.1, 3.3.1, Claim 5.1.1, Propositions 3.1.1, 3.2.2 and 3.3.1, we get the assertion
of Lemma 5.1.1.

By Definition 5.1.1 and Lemma 5.1.1, we can prove the following.

Proposition 5.1.1 Let i be an integer with 1 ≤ i ≤ n − 1 and let (X,L1, . . . , Ln−i) be an n-
dimensional multi-polarized manifold of type n− i. Assume that there exists a sequence of smooth
subvarieties X ⊃ X1 ⊃ · · · ⊃ Xn−i such that Xj ∈ |Lj |Xj−1 | for every integer j with 1 ≤ j ≤ n− i.
Here we set X0 := X. Then for every integer k with 0 ≤ k ≤ n − i − 1 we have

χH
i (Xk, Lk+1|Xk

, . . . , Ln−i|Xk
) = χH

i (Xk+1, Lk+2|Xk+1 , . . . , Ln−i|Xk+1),
gi(Xk, Lk+1|Xk

, . . . , Ln−i|Xk
) = gi(Xk+1, Lk+2|Xk+1 , . . . , Ln−i|Xk+1),

ei(Xk, Lk+1|Xk
, . . . , Ln−i|Xk

) = ei(Xk+1, Lk+2|Xk+1 , . . . , Ln−i|Xk+1),
bi(Xk, Lk+1|Xk

, . . . , Ln−i|Xk
) = bi(Xk+1, Lk+2|Xk+1 , . . . , Ln−i|Xk+1),

hj,i−j
i (Xk, Lk+1|Xk

, . . . , Ln−i|Xk
) = hj,i−j

i (Xk+1, Lk+2|Xk+1 , . . . , Ln−i|Xk+1).

In particular, we have

χH
i (X,L1, . . . , Ln−i) = χ(OXn−i),

gi(X,L1, . . . , Ln−i) = hi(OXn−i),
ei(X,L1, . . . , Ln−i) = e(Xn−i),
bi(X,L1, . . . , Ln−i) = hi(Xn−i, C),

hj,i−j
i (X,L1, . . . , Ln−i) = hj,i−j(Xn−i).

5.2 Relation between cr-sectional invariants and invariants defined be-
fore

The following proposition shows that the sectional invariants of polarized manifolds in 2.2 are
special cases of invariants defined in Definition 5.1.1.

Proposition 5.2.1 Let i be an integer with 0 ≤ i ≤ n − 1 and let (X,L1, . . . , Ln−i) be a multi-
polarized manifold of type n − i. Assume that a line bundle L is ample and Lk = L for every
integer k with 1 ≤ k ≤ n − i. Then we have

χH
i (X,L1, . . . , Ln−i) = χH

i (X,L), gi(X,L1, . . . , Ln−i) = gi(X,L),
ei(X,L1, . . . , Ln−i) = ei(X,L), bi(X,L1, . . . , Ln−i) = bi(X,L).

hj,i−j
i (X,L1, . . . , Ln−i) = hj,i−j

i (X,L) for every integer j with 0 ≤ j ≤ i.

Here χH
i (X,L), gi(X,L), ei(X,L), bi(X,L), hj,i−j

i (X,L) are sectional invariants defined in Defi-
nition 2.2.1.

Proof. We will prove the first equality. Other equalities can be also proved by the same
argument as the following. Let H be an ample line bundle on X such that L(t) := L ⊗ H⊗t is
ample and spanned for any positive integer t. Then there exists a sequence of smooth projective
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varieties X ⊃ X1 ⊃ · · · ⊃ Xn−i such that Xk ∈ |L(t)|Xk−1 | for every integer k with 1 ≤ k ≤ n − i.
Then by Proposition 5.1.1 and [5, Remark 2.1 (4)] we have

χH
i (X,L(t), . . . , L(t)︸ ︷︷ ︸

n−i

) = χ(OXn−i) = χH
i (X,L(t)).

Since χH
i (X,L(t), . . . , L(t)) and χH

i (X,L(t)) are polynomials in t, by the same argument as in the
proof of Theorem 4.1, we have

χH
i (X,L, . . . , L) = χH

i (X,L(0), . . . , L(0)) = χH
i (X,L(0)) = χH

i (X,L).

Therefore we get the assertion.

Remark 5.2.1 Under the assumption that X is smooth, we see that χH
i (X,L1, . . . , Ln−i) (resp.

gi(X,L1, . . . , Ln−i)) in Definition 5.1.1 is equal to

χH
i (X,L1, . . . , Ln−i;OX) (resp. gi(X,L1, . . . , Ln−i;OX))

in [7, Definition 2.1]. We also note that χH
i (X,L1, . . . , Ln−i) (resp. gi(X,L1, . . . , Ln−i)) is defined

for any smooth projective variety X, but in [7, Definition 2.1], χH
i (X,L1, . . . , Ln−i;OX) (resp.

gi(X,L1, . . . , Ln−i;OX)) was defined for any projective varieties.

We also note the following.

Proposition 5.2.2 Let X be a smooth projective variety of dimension n.

(1) Let E be an ample vector bundle of rank e on X with e ≤ n. Let E1 = E and let E2 = · · · =
En−e−i+1 = c1(E) if i ≤ n − e − 1. Then gn,n−i(X, E1 ⊕ · · · ⊕ En−e−i+1) is equal to gi(X, E)
which is the ith cr-sectional geometric genus of multi-polarized manifold (X, E) defined in [2,
Definition 2.1].

(2) Let E be an ample vector bundle of rank e on X with e ≤ n − 1 and let H be an ample line
bundle on X. Let E1 = E and let E2 = · · · = En−e = H if e ≤ n − 2. Then gn,n−1(X, E1 ⊕
· · ·⊕En−e) is equal to the invariant g(X, E , H) which was defined by Fusi and Lanteri in [11].

Proof. We are going to prove the assertion (1). We use Fact 3.1.4 Then by Lemma 5.1.1 and
Definition 5.1.1, we see that for every positive integer t

gn,n−i(X, E(t) ⊕ c1(E(t)) ⊕ · · · ⊕ c1(E(t))︸ ︷︷ ︸
n−e−1

) = gn−e,n−e−i(Z(t), c1(E(t))Z(t) ⊕ · · · ⊕ c1(E(t))Z(t)︸ ︷︷ ︸
n−e−1

)

= gi(Z(t), c1(E(t))Z(t), · · · , c1(E(t))Z(t)︸ ︷︷ ︸
n−e−1

).

By Proposition 5.2.1 and [2, Theorem 2.2], we have

gi(Z(t), c1(E(t))Z(t), · · · , c1(E(t))Z(t)︸ ︷︷ ︸
n−e−1

) = gi(Z(t), c1(E(t))Z(t)) = gi(X, E(t)).

Hence we get
gn,n−i(X, E(t) ⊕ c1(E(t)) ⊕ · · · ⊕ c1(E(t))) = gi(X, E(t))

for every positive integer t. By the same argument as in the proof of Theorem 4.1, we see that

gi(X, E) = gn,n−i(X, E ⊕ c1(E) ⊕ · · · ⊕ c1(E)).

So we get the assertion of (1). We can also prove (2) by the same argument as the proof of (1).
4Here let e = rank E.
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5.3 Some properties of the sectional Euler numbers, the sectional Betti
numbers and the sectional Hodge numbers of multi-polarized man-
ifolds

In [7] and [9], we studied the sectinal H-arithmetic genus and the sectional geometric genus of
multi-polarized manifolds (see also Remark 5.2.1). So here, we will study some properties of the
sectional Euler numbers, the sectional Betti numbers and the sectional Hodge numbers of multi-
polarized manifolds. First we will show Theorem 5.3.1 which is a generalization of [6, Theorem
4.4]. Before this, we need the following.

Definition 5.3.1 Let k be a positive integer.

(1) Let (X,L1, · · · , Lk) and (Y,A1, · · · , Ak) be n-dimensional multi-polarized manifolds of type k.
Then (X,L1, · · · , Lk) is called a simple blowing up of a multi-polarized manifold (Y,A1, · · · , Ak)
of type k if there exists a blowing up π : X → Y at a point y ∈ Y such that Lj = π∗(Aj)−E
and E|E ∼= OPn−1(−1) for every integer j with 1 ≤ j ≤ k, where E ∼= Pn−1 is the exceptional
effective divisor.

(2) A multi-polarized manifold (X̃, L̃1, · · · , L̃k) of type k is called a reduction of (X,L1, · · · , Lk)
if there exists a birational morphism

π : (X,L1, · · · , Lk) → (X̃, L̃1, · · · , L̃k)

such that π is a composite of simple blowing ups and (X̃, L̃1, · · · , L̃k) is not a simple blowing
up of another multi-polarized manifold of type k. This π is called the reduction map.

Remark 5.3.1 Let (X,L1, . . . , Lk) be a multi-polarized manifold of type k, where k is an integer
with 1 ≤ k ≤ n − 1.
(i) If (X,L1, . . . , Lk) is not a simple blowing up of another multi-polarized manifold of type k,
then we regard (X,L1, . . . , Lk) as a reduction of itself. Then there always exists a reduction of
(X,L1, . . . , Lk).
(ii) Let (X,L1, . . . , Lk) be a simple blowing up of (Y,H1, . . . ,Hk). Let π be its birational morphism
and let E be its exceptional divisor. Assume that there exists a smooth projective variety X1 ∈ |L1|.
Then Y1 := π(X1) is also a smooth projective variety of dimension n − 1 and Y1 ∈ |H1|. By
the same argument as in [8, Proposition 2.1] we see that (E1,−E1|E1) ∼= (Pn−2,OPn−2(1)) and
(Lj)X1 = (πX1)

∗(Hj |Y1) − E1 for every integer j with 2 ≤ j ≤ k, where E1 := E ∩ X1. Hence
(X1, L2|X1 , . . . , Lk|X1) is a simple blowing up of (Y1,H2|Y1 , . . . ,Hk|Y1) and π|X1 : X1 → Y1 is its
birational morphism. By repeating this process, we see that if there exists a smooth projective
variety Xl+1 ∈ |Ll+1|Xl

| of dimension n− l− 1 for every integer l with 1 ≤ l ≤ k − 2, then Yl+1 :=
(π|Xl

)(Xl+1) is also a smooth projective variety of dimension n − l − 1 and Yl+1 ∈ |Hl+1|Yl
|, and

we infer that (Xl+1, Ll+2|Xl+1 , . . . , Lk|Xl+1) is a simple blowing up of (Yl+1,Hl+2|Yl+1 , . . . ,Hk|Yl+1)
and π|Xl+1 : Xl+1 → Yl+1 is its birational morphism.

Proposition 5.3.1 Let (X,L1, · · · , Ln−i) be a multi-polarized manifold of type n−i with dimX =
n, let (Y,H1, · · · ,Hn−i) be a reduction of (X,L1, · · · , Ln−i) and let π : X → Y be its reduction
map. Let γ be the number of points blown up under the reduction map. Let i and j be integers
with 0 ≤ j ≤ i and 0 ≤ i ≤ n − 1. Then

(a)
ei(X,L1, · · · , Ln−i) = ei(Y,H1, · · · ,Hn−i) + (i − 1)γ.

(b)

bi(X,L1, · · · , Ln−i) =

 bi(Y,H1, · · · ,Hn−i) if i is odd,
bi(Y,H1, · · · ,Hn−i) + γ if i is even with i ≥ 2,
b0(Y,H1, · · · , Hn−i) − γ if i = 0.
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(c)

hj,i−j
i (X,L1, · · · , Ln−i) =


hj,i−j

i (Y,H1, · · · ,Hn−i) if 1 ≤ i and 2j ̸= i,
hj,i−j

i (Y,H1, · · · ,Hn−i) + γ if 1 ≤ i and 2j = i,
h0,0

0 (Y,H1, · · · ,Hn−i) − γ if i = 0.

Proof. First we note that it suffices to consider the case where (X,L1, · · · , Ln−i) is a simple
blowing up of (Y,H1, · · · ,Hn−i). Let π : X → Y be its morphism. Then Lj = π∗(Hj) − E holds
for every integer j with 1 ≤ j ≤ n − i, where E is the exceptional divisor. Let Hj(t) := H⊗t

j

and Lj(t) := π∗(Hj(t)) − E. By the same argument as in the proof of [8, Claim 2.1], there exists
a positive integer p such that Hj(t) and Lj(t) are ample and spanned for every integers j and t
with 1 ≤ j ≤ n − i and t ≥ p. By Remark 5.3.1 (ii), for every integer k with 1 ≤ k ≤ n − i − 2
there exists a smooth projective variety Xk+1(t) ∈ |Lk+1(t)|Xk(t)| of dimension n − k − 1 such
that Yk+1(t) := (π|Xk(t))(Xk+1(t)) is also a smooth projective variety of dimension n − k − 1 and
Yk+1(t) ∈ |Hk+1(t)|Yk(t)|, and we see that (Xk+1(t), Lk+2(t)|Xk+1(t), . . . , Ln−i(t)|Xk+1(t)) is a simple
blowing up of (Yk+1(t),Hk+2(t)|Yk+1(t), . . . ,Hn−i(t)|Yk+1(t)) and π|Xk+1(t) : Xk+1(t) → Yk+1(t) is
its birational morphism. Therefore by Proposition 5.1.1, [6, Theorem 3.2] and [8, Proposition 2.2],
we see that the following hold for every integer t with t ≥ p.

ei(X,L1(t), · · · , Ln−i(t)) = ei(Xn−i−1(t), Ln−i(t)|Xn−i−1(t))
= ei(Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) + (i − 1)
= ei(Y,H1(t), · · · ,Hn−i(t)) + (i − 1),

bi(X,L1(t), · · · , Ln−i(t)) = bi(Xn−i−1(t), Ln−i(t)|Xn−i−1(t))

=

 bi(Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) if i is odd,
bi(Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) + 1 if i is even with i ≥ 2,
b0(Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) − 1 if i = 0,

=

 bi(Y,H1(t), · · · ,Hn−i(t)) if i is odd,
bi(Y,H1(t), · · · ,Hn−i(t)) + 1 if i is even with i ≥ 2,
b0(Y,H1(t), · · · ,Hn−i(t)) − 1 if i = 0,

hj,i−j
i (X,L1(t), · · · , Ln−i(t)) = hj,i−j

i (Xn−i−1(t), Ln−i(t)|Xn−i−1(t))

=


hj,i−j

i (Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) if 1 ≤ i and 2j ̸= i,
hj,i−j

i (Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) + 1 if 1 ≤ i and 2j = i,
h0,0

0 (Yn−i−1(t),Hn−i(t)|Yn−i−1(t)) − 1 if i = 0,

=


hj,i−j

i (Y,H1(t), · · · ,Hn−i(t)) if 1 ≤ i and 2j ̸= i,
hj,i−j

i (Y,H1(t), · · · ,Hn−i(t)) + 1 if 1 ≤ i and 2j = i,
h0,0

0 (Y,H1(t), · · · ,Hn−i(t)) − 1 if i = 0.

Here we note that ei(X,L1(t), · · · , Ln−i(t)), ei(Y,H1(t), · · · ,Hn−i(t)), bi(X,L1(t), · · · , Ln−i(t)),
bi(Y,H1(t), · · · ,Hn−i(t)), hj,i−j

i (X,L1(t), · · · , Ln−i(t)) and hj,i−j
i (Y,H1(t), · · · ,Hn−i(t)) are poly-

nomials in t. Hence we see that the above equalities hold for the case of t = 1, and we get the
assertion.

Next we consider a lower bound for the second sectional Euler numbers of multi-polarized
manifolds. First of all, we will give the formula for the sectional Euler number of multi-polarized
manifolds.
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Remark 5.3.2 We note that

sk((L1 ⊕ · · · ⊕ Lr)∨) = (−1)k
∑

(p1,...,pr)∈H(k)

(Lp1
1 · · ·Lpr

r ), (4)

where we set

H(k) =

(p1, . . . , pr) ∈ Z⊕r
≥0

∣∣∣∣∣
r∑

j=1

pj = k

 .

Hence, by Definition 5.1.1 and (4) we see that

ei(X,L1, . . . , Ln−i) =
i∑

k=0

(−1)i−kck(X)

 ∑
(p1,...,pn−i)∈H(i−k)

Lp1
1 · · ·Lpn−i

n−i

 L1 · · ·Ln−i. (5)

Theorem 5.3.1 Let (X,L1, . . . , Ln−2) be a multi-polarized manifold of type n − 2 with dimX =
n ≥ 3. Assume that κ(X) ≥ 0. Let (M,A1, . . . , An−2) be a reduction of (X,L1, . . . , Ln−2) and let
γ be the number of points blown up under the reduction map. Then the following hold.

(i)

e2(X,L1, . . . , Ln−2)

≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2 +
(

(n − 1)(n − 2)
n

+ 1
)

γ

≥ (n − 1)(n − 2)
n

(γ + 1) + γ.

(ii)
b2(X,L1, . . . , Ln−2) ≥ 4q(X) + γ ≥ γ.

Proof. Since κ(X) ≥ 0, we see that KM +A1+ · · ·+An−2 is nef and (n−2)-big by [9, Theorem
5.2.1]. Hence by [4, Theorem 2.1] we have

c2(M)A1 · · ·An−2 ≥ −n − 1
n

KM

n−2∑
j=1

Aj

 A1 · · ·An−2 −
n − 1
2n

n−2∑
j=1

Aj

2

A1 · · ·An−2. (6)

(i) By Proposition 5.3.1, the equality (5) in Remark 5.3.2 and (6) above we have

e2(X,L1, . . . , Ln−2)
= e2(M,A1, . . . , An−2) + γ

=
2∑

k=0

(−1)2−kck(M)

 ∑
(p1,...,pn−2)∈H(2−k)

Ap1
1 · · ·Apn−2

n−2

 A1 · · ·An−2 + γ

≥ 1
n

KM

n−2∑
j=1

Aj

 A1 · · ·An−2 +
1
2n

n−2∑
j=1

Aj

2

A1 · · ·An−2 +
1
2

n−2∑
j=1

A2
j

A1 · · ·An−2 + γ

≥ 1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
(n − 2)2

2n
γ +

1
2

n−2∑
j=1

L2
j

L1 · · ·Ln−2 +
n − 2

2
γ + γ.
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Sincen−2∑
j=1

Lj

2

L1 · · ·Ln−2 ≥ 2
(

n − 2
2

)
+ n − 2 and

n−2∑
j=1

L2
j

 L1 · · ·Ln−2 ≥ n − 2,

we have

1
2n

n−2∑
j=1

Lj

2

L1 · · ·Ln−2 +
1
2

n−2∑
j=1

L2
j

 L1 · · ·Ln−2 ≥ (n − 1)(n − 2)
n

.

Hence we get the assertion of (i).
(ii) Next we will prove the inequality (ii). If n = 3, then this is true by the proof of [6, Theorem
4.4]. So we assume that n ≥ 4. First we note that by Definition 5.1.1, Proposition 5.3.1, the
equality (5) in Remark 5.3.2 and (6) above we have

b2(X,L1, . . . , Ln−2) = c2(M)A1 · · ·An−2 + KM

n−2∑
j=1

Aj

 A1 · · ·An−2

+
∑
i≤j

(AiAj)A1 · · ·An−2 + 4q(M) − 2 + γ. (7)

(ii.a) Assume that KMAjA1 · · ·An−2 = 0 for some j. Then KM ≡ 0 because κ(X) ≥ 0 and each
Aj is ample. Hence c2(M)A1 · · ·An−2 ≥ 0 by a Miyaoka’s result ([17, Theorem 6.6]). So by (7) we
get

b2(X,L1, . . . , Ln−2) ≥
∑
i≤j

(AiAj)A1 · · ·An−2 + 4q(M) − 2 + γ.

Since we assume that n ≥ 4, we have
∑

i≤j(AiAj)A1 · · ·An−2 ≥ 3. Hence b2(M,A1, . . . , An−2) ≥
4q(M) + 1 + γ > 4q(M) + γ.
(ii.b) Assume that KMAjA1 · · ·An−2 ≥ 1 for every j. Then by (6) and (7) we have

b2(X,L1, . . . , Ln−2) ≥ 1
n

KM

n−2∑
j=1

Aj

A1 · · ·An−2 +
n + 1
2n

n−2∑
j=1

A2
j

 A1 · · ·An−2

+
1
n

∑
i<j

(AiAj)A1 · · ·An−2 + 4q(M) − 2 + γ

≥ 4q(M) + (n − 4) + γ ≥ 4q(M) + γ

because n ≥ 4, (
∑n−2

j=1 A2
j)A1 · · ·An−2 ≥ n − 2 and

∑
i<j(AiAj)A1 · · ·An−2 ≥

(
n−2

2

)
. So we get

the assertion (ii) because q(M) = q(X).

6 Problems and Conjectures

In this section, we will provide some conjectures and problems. First we propose the following.

Conjecture 6.1 Let X be a smooth projective variety of dimension n, E an ample vector bundle
of rank r on X. Assume that r ≤ n − 1. Then the following inequality hold.

gn,r(X, E) ≥ 0, bn,r(X, E) ≥ 0.

The following problem is very interesting in view of classification theory.
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Problem 6.1 Classify n-dimensional generalized polarized manifold (X, E) with rank E ≤ n by
the value of cr-sectional invariants defined in Section 3.

More strongly, we can propose the following conjecture by considering Proposition 4.1.

Conjecture 6.2 Let X be a smooth projective variety of dimension n, E an ample vector bundle
of rank r on X. Assume that r ≤ n− 1. Then for every integer j with 0 ≤ j ≤ n− r the following
hold.

(i) bn,r(X, E) ≥ 2gn,r(X, E). (ii) bn,r(X, E) ≥ hn−r(X, C).

(iii) hj,n−r−j
n,r (X, E) ≥ hj,n−r−j(X). (iv) If n − r = 2k, then hk,k

n,r(X, E) ≥ 1.

If E is an ample vector bundle of rank r with 0 < i = n − r, then cr-sectional invariants of
(X, E) are thought to reflect some properties of i-dimensional manifolds from Propositions 3.1.1,
3.2.2 and 3.3.1. In particular we can propose the following problems for the case i = 2.

Problem 6.2 Let X be a smooth projective variety of dimension n, E an ample vector bundle of
rank r on X. Assume that n− r = 2. Then generalize the theory of surfaces in view of cr-sectional
invariants of (X, E).

For example, the following is an answer for this problem. We can regard the following theorem
as an analogue of Noether’s equality.

Theorem 6.1 Let (X, E) be a generalized polarized manifold of dimension n with rank E = n− 2.
Then

12χH
n,n−2(X, E) = (KX + c1(E))2cn−2(E) + en,n−2(X, E).

Proof. We use Fact 3.1 and notation in Fact 3.1. Let

F (t) := (KX + c1(E(t)))2cn−2(E(t)) + en,n−2(X, E(t)), G(t) := 12χH
n,n−2(X, E(t)).

Then F (t) and G(t) are polynomials in t. For every positive integer p, by Remark 2.1.2 and
Proposition 3.1.1 we have F (p) = (KX + c1(E(p)))2cn−2(E(p)) + en,n−2(X, E(p)) = (KZ(p))2 +
e(Z(p)). Since Z(p) is a smooth projective surface, by Noether’s equality we have (KZ(p))2 +
e(Z(p)) = 12χ(OZ(p)). So by Proposition 3.1.1, for every positive integer p, we have F (p) =
(KZ(p))2 + e(Z(p)) = 12χ(OZ(p)) = 12χH

n,n−2(X, E(p)) = G(p). Hence we see that this equality
also holds for t = 0 because F (t) and G(t) are polynomials in t. Therefore we get the assertion.

Moreover, we can propose the following conjectures specifically.

Conjecture 6.3 Let X be a smooth projective variety of dimension n, E an ample vector bundle
of rank n − 2 on X.

(i) (Analogue of Castelnuovo’s theorem) If κ(KX + c1(E)) ≥ 0 (resp. ≥ 2), then

χH
n,n−2(X, E) ≥ 0 (resp. > 0).

(ii) (Analogue of Bogomolov-Miyaoka-Yau’s theorem) If κ(KX + c1(E)) ≥ 2, then

9χH
n,n−2(X, E) ≥ (KX + c1(E))2cn−2(E).

(iii) (Analogue of Noether’s inequality) If KX + c1(E) is nef and κ(KX + c1(E)) ≥ 2, then

(KX + c1(E))2cn−2(E) ≥ 2gn,n−2(X, E) − 4.
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