
On classification of polarized 3-folds (X, L) with

h0(KX + 2L) = 2 ∗†‡

YOSHIAKI FUKUMA

January 19, 2012

Abstract

Let (X, L) be a polarized manifold of dimension n ≥ 3. In this paper, we give a classification
of (X, L) with n = 3 and h0(KX + 2L) = 2. In order to classify these (X, L), we study a
classification of (X, L) which satisfies h0(KX + (n − 1)L) = 2 and κ(KX + (n − 2)L) = −∞.

1 Introduction

Let (X,L) be a polarized manifold of dimension n. Recently the dimension of global sections
of adjoint bundles of (X,L) has been studied actively by several authors (for example [14], [15],
[16], [3], [4], [17], [19] and so on). In particular the author has proved the following conjecture for
the case of dim X = 3, which was proposed by Beltrametti and Sommese.

Conjecture 1.1 (Beltrametti-Sommese) Let (X,L) be a polarized manifold of dimension n ≥
2. Assume that KX + (n − 1)L is nef. Then h0(KX + (n − 1)L) > 0.

Here we note that if KX + (n − 1)L is not nef and n ≥ 2, then (X,L) is one of the following
types.

• (Pn,OPn(1)).

• (Qn,OQn(1)).

• A scroll over a smooth curve.

• (P2,OP2(2)).

In these cases we see that h0(KX + (n − 1)L) = 0. Hence this conjecture says that h0(KX +
(n − 1)L) = 0 if and only if (X,L) is one of the above types. In particular, we get a classification
of polarized 3-folds (X,L) with h0(KX + 2L) = 0. Moreover the author gave a classification of
polarized 3-folds (X,L) with h0(KX + 2L) = 1 (see [14, Theorem 2.4]).

In this paper, as the next step, we are going to study polarized 3-folds (X,L) with h0(KX +
2L) = 2. In this case, we see from [14, Theorem 2.3] that (X,L) satisfies κ(KX + L) = −∞. So
in this paper, we will treat more general case, that is, we consider a classification of (X,L) with
dimX = n ≥ 3, h0(KX + (n − 1)L) = 2 and κ(KX + (n − 2)L) = −∞. As a result, we can get a
classification of polarized 3-folds (X,L) with h0(KX + 2L) = 2. Finally, we are going to give some
remarks about a classification of (X,L) with dimX = n ≥ 4 and h0(KX + (n − 1)L) = 2.

In this paper, we use customary notation in algebraic geometry.
∗Key words and phrases. Polarized manifold, adjunction theory, adjoint bundles, sectional genus, sectional

geometric genus.
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2 Preliminaries

Definition 2.1 Let (X,L) be a polarized manifold of dimension n. We say that (X,L) is a scroll
(resp. quadric fibration) over a normal projective variety Y of dimension m with 1 ≤ m < n if there
exists a surjective morphism with connected fibers f : X → Y such that KX +(n−m+1)L = f∗A
(resp. KX + (n − m)L = f∗A) for some ample line bundle A on Y .

Definition 2.2 (1) A polarized manifold is called a classical scroll over a normal variety Y if
there exists a vector bundle E on Y such that X ∼= PY (E) and L = H(E), where H(E) is the
tautological line bundle.

(2) We say that a polarized manifold (X,L) is a hyperquadric fibration over a smooth projective
curve C if (X,L) is a quadric fibration over C and the morphism f : X → C is the contraction
morphism of an extremal ray. In this case, (F,LF ) ∼= (Qn−1,OQn−1(1)) for any general fiber
F of f and every fiber of f is irreducible and reduced (see [20] or [6, Claim (3.1)]).

Remark 2.1 (1) If (X,L) is a scroll over a normal projective surface S, then S is smooth and
(X,L) is also a classical scroll over S (see [2, (3.2.1) Theorem] and [8, Chapter II, (11.8.6)]).

(2) Assume that (X,L) is a quadric fibration over a smooth projective curve C with dimX =
n ≥ 3. Let f : X → C be its morphism. By [2, (3.2.6) Theorem] and the proof of [20, Lemma
(c) in Section 1], we see that (X,L) is one of the following:

(a) A hyperquadric fibration over a smooth projective curve.

(b) A classical scroll over a smooth projective surface with dim X = 3.

Theorem 2.1 Let (X,L) be a polarized manifold of dimension n ≥ 3. Then (X,L) is one of the
following types.

(1) (Pn,OPn(1)).

(2) (Qn,OQn(1)).

(3) A scroll over a smooth projective curve.

(4) KX ∼ −(n − 1)L, that is, (X,L) is a Del Pezzo manifold.

(5) A hyperquadric fibration over a smooth projective curve.

(6) A classical scroll over a smooth projective surface S.

(7) Let (X ′, L′) be a reduction of (X,L).

(7.1) n = 4, (X ′, L′) = (P4,OP4(2)).

(7.2) n = 3, (X ′, L′) = (Q3,OQ3(2)).

(7.3) n = 3, (X ′, L′) = (P3,OP3(3)).

(7.4) n = 3, X ′ is a P2-bundle over a smooth projective curve C such that (F ′, L′|F ′) ∼=
(P2,OP2(2)) for any fiber F ′ of it.

(7.5) KX′ + (n − 2)L′ is nef.

Proof. See [1, Proposition 7.2.2, Theorems 7.2.4, 7.3.2 and 7.3.4] and [8, Chapter II, (11.2),
(11.7), and (11.8)], or [20, Section 1, Theorem].

Remark 2.2 Let (X,L) be a polarized manifold of dimension n ≥ 3. If (X,L) is one of the types
from (1) to (6) in Theorem 2.1, then (X,L) is a reduction of itself.
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Remark 2.3 Let (X,L) be a polarized manifold of dimension n ≥ 3. Then κ(KX+(n−2)L) = −∞
if and only if (X,L) is one of the types from (1) to (7.4) in Theorem 2.1.

Notation 2.1 (See [6, §3].) Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume
that (X,L) is a hyperquadric fibration over a smooth projective curve C. Let f : X → C be its
morphism. We put E := f∗(L). Then E is a locally free sheaf of rank n+1 on C. Let π : PC(E) → C
be the projective bundle. Then X ∈ |2H(E)+π∗(B)| for some B ∈ Pic(C) and L = H(E)|X , where
H(E) is the tautological line bundle of PC(E). We put d := Ln, e := deg E and b := deg B.

Remark 2.4 Let (X,L) be a hyperquadric fibration over a smooth projective curve C and we use
the notation in Notation 2.1. Then the following hold (see the proof of [14, Theorem 2.2]).

KX = ((−n + 1)H(E) + π∗(KC + det(E) + B))|X
= (−n + 1)L + f∗(KC + det(E) + B),

g(X,L) = 2g(C) − 1 + e + b,

h0(KX + (n − 1)L) = g(X,L) − h1(OX) = g(C) − 1 + e + b.

Proposition 2.1 ([24, Theorem 1.3]) Let X be a smooth projective surface and let f : X → C
be an elliptic fibration such that q(X) = g(C) + 1. Then there exist a smooth projective curve B
of genus ≥ 2, a smooth projective curve E of genus 1 and a finite Abelian group G = Zm × Zn

acting faithfully on B and E and by translations on E such that X ∼= (B × E)/G, where G acts
diagonally on the product, and C ∼= B/G. Moreover f is the natural map (B ×E)/G → B/G. Let
F be a general fiber of f and let D be a general fiber of (B ×E)/G → E/G. Then F ∼= E, D ∼= B
and DF = ♯G = mn.

Moreover assume that g(C) = 0. Let µ := lcm{mi} be the least common multiple of the
multiplicities of the fibers. Then the group of divisors on X modulo numerical equivalence Num(X)
is generated by (1/µ)F and (µ/γ)D + (δ/2µ)F , where γ = ♯G and

δ =
{

0, if (2g(B) − 2)µ/γ is even
1, if (2g(B) − 2)µ/γ is odd.

Let a, b ∈ Z and we set N1 = (1/µ)F and N2 = (µ/γ)D + (δ/2µ)F . Then a line bundle on X
whose numerical type is aN1 + bN2 is ample if and only if 2a + δb > 0 and b > 0.

3 Main Results

In this section, we are going to study polarized 3-folds (X,L) with h0(KX + 2L) = 2. As we said
in the Introduction, by [14, Theorem 2.3], we see that κ(KX + L) = −∞. So, in order to get a
classification of polarized 3-fold (X,L) with h0(KX + 2L) = 2, we need to study the case where
κ(KX + L) = −∞ and h0(KX + 2L) = 2. Here we consider more general case. Namely we study
polarized manifolds (X,L) with dim X = n ≥ 3, κ(KX+(n−2)L) = −∞ and h0(KX+(n−1)L) = 2.

Theorem 3.1 Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume that κ(KX + (n−
2)L) = −∞. If h0(KX + (n − 1)L) = 2, then (X,L) is one of the following.

(A) (X,L) is a hyperquadric fibration over a smooth projective curve C and one of the following
holds. (Here we use Notation 2.1.)

(A.1) g(C) = 2 and d, e, b and n are one of the following types.

d e b n
3 2 −1 3
2 1 0 ≥ 3
1 0 1 ≥ 3
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(A.2) g(C) = 1 and d, e and b are one of the following types.

d e b
6 4 −2
5 3 −1
4 2 0
3 1 1
2 0 2
1 −1 3

(A.3) g(C) = 0 and (X,L) is one of the types in [6, (3.30) Theorem].

(B) (X,L) is a classical scroll over a smooth projective surface S. Then there exists an ample
vector bundle E on S such that X = PS(E) and L = H(E), and (S, E) is one of the following.

(B.1) S is the Jacobian variety of a smooth projective curve C of genus two and E ∼= Er(C, o)⊗
N for some numerically trivial line bundle N on S, where Er(C, o) is the Jacobian bundle
of rank n − 1 for some point o on C.

(B.2) S is an abelian surface and (det(E))2 = 4.

(B.3) S is a bielliptic surface and (det(E))2 = 4.

(B.4) n = 3, S is a one point blowing up of T and E is an indecomposable ample vector bundle
of rank two on S with det(E) = π∗(H) − 2E, where T is either an abelian surface or a
bielliptic surface, π : S → T is the birational morphism, E is the exceptional curve and
H is an ample line bundle on T with H2 = 6.

(B.5) S is a minimal surface with κ(S) = 1 and χ(OS) = 0. Then X has an elliptic fibration
f : S → C over a smooth projective curve C. Let miFi (resp. F ) be a multiple fiber
(resp. a general fiber) of f and let t be the number of multiple fibers. Then q(S), g(C),
t, (m1, . . . ,mt), (det(E))F and KS(det(E)) are one of the types in the Table 1 below.

(B.6) There exist a smooth projective curve C with g(C) = 2 and vector bundles F and G of
rank two on C such that F is normalized, S ∼= PC(F) and E ∼= h∗(G) ⊗ H(F), where
h : S → C is the projection. Then det E ≡ 2C0 + (1 − degF)F and (degF ,deg G) =
(0, 1), (1, 0), (2,−1), where C0 is the minimal section of PC(F) → C. In particular the
rank of E is two and n = 3. Moreover if degF ≥ 1, then F and G are semistable.

(B.7) (S, E) is one of the types in [21, (2.3) Theorem (V)].

(B.8) (S, E) is either 4), 5)0 or 5)1 in [7, (2.25) Theorem].

(C) Let (M,A) be a reduction of (X,L). Then (M,A) is a P2-bundle Φ : M → C over a
smooth elliptic curve C with A|F ∼= OP2(2) for every fiber F of Φ. In this case, there exists
a stable vector bundle E of rank three on C with c1(E) = 2 such that M ∼= PC(E) and
A = 2H(E) + Φ∗(B) for some line bundle B on C with det(E) + 2B = 0.

Proof. If KX + (n − 1)L is not nef, then (X,L) is either (1), (2) or (3) in Theorem 2.1.
Then we see that h0(KX + (n − 1)L) = 0. So we may assume that KX + (n − 1)L is nef. If
κ(KX + (n− 2)L) = −∞, then by assumption, Theorem 2.1, and Remark 2.3, (X,L) is one of the
following types.

(a) KX ∼ −(n − 1)L, that is, (X,L) is a Del Pezzo manifold.

(b) A hyperquadric fibration over a smooth projective curve.

(c) A classical scroll over a smooth projective surface.

(d) Let (M,A) be a reduction of (X,L).
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Table 1: The list of the possible cases of (B.5) in Theorem 3.1
q(S) g(C) t (m1, . . . ,mt) (det(E))F KS(det(E))

(1) 2 1 2 (2, 2) 2 2
(2) 1 0 6 (2, 2, 2, 2, 2, 2) 2 2
(3) 1 0 5 (2, 2, 2, 2, 2) 2 1
(4) 1 0 4 (3, 3, 3, 3) 3 2
(5) 1 0 4 (6, 2, 2, 2) 6 2
(6) 1 0 4 (4, 2, 2, 2) 4 1
(7) 1 0 4 (3, 2, 2, 2) 6 1
(8) 1 0 4 (4, 4, 2, 2) 4 2
(9) 1 0 4 (3, 3, 2, 2) 6 2
(10) 1 0 3 (5, 5, 5) 5 2
(11) 1 0 3 (4, 4, 4) 4 1
(12) 1 0 3 (6, 6, 3) 6 2
(13) 1 0 3 (6, 3, 3) 6 1
(14) 1 0 3 (4, 4, 3) 12 2
(15) 1 0 3 (4, 3, 3) 12 1
(16) 1 0 3 (9, 3, 3) 9 2
(17) 1 0 3 (5, 3, 3) 15 2
(18) 1 0 3 (10, 3, 2) 30 2
(19) 1 0 3 (18, 3, 2) 18 2
(20) 1 0 3 (12, 4, 2) 12 2
(21) 1 0 3 (8, 8, 2) 8 2
(22) 1 0 3 (10, 5, 2) 10 2
(23) 1 0 3 (7, 3, 2) 42 1
(24) 1 0 3 (8, 3, 2) 24 1
(25) 1 0 3 (9, 3, 2) 18 1
(26) 1 0 3 (12, 3, 2) 12 1
(27) 1 0 3 (5, 4, 2) 20 1
(28) 1 0 3 (6, 4, 2) 12 1
(29) 1 0 3 (8, 4, 2) 8 1
(30) 1 0 3 (6, 6, 2) 6 1
(31) 1 0 3 (5, 5, 2) 10 1
(32) 2 2 0 nothing 1 2
(33) 1 1 1 (2) 2 1
(34) 1 1 2 (2, 2) 2 2
(35) 1 1 1 (2) 4 2
(36) 1 1 1 (3) 3 2

5



(d.1) n = 4, (M,A) = (P4,OP4(2)).
(d.2) n = 3, (M,A) = (Q3,OQ3(2)).
(d.3) n = 3, (M,A) = (P3,OP3(3)).
(d.4) n = 3, M is a P2-bundle over a smooth projective curve C and for any fiber F of it,

(F,A|F ) ∼= (P2,OP2(2)).

Note that since h0(KX +(n−1)L) = h0(KM +(n−1)A), we may assume that (X,L) = (M,A).

(a) The case in which (X,L) is a Del Pezzo manifold.
Then OX(KX +(n−1)L) ∼ OX and h0(KX +(n−1)L) = 1. Hence this case cannot occur because
we assume that h0(KX + (n − 1)L) = 2.

(b) The case in which (X,L) is a hyperquadric fibration over a smooth projective curve C.
Here we use Notation 2.1. Here we note that e+b > 0 by [14, Claim 2.1] and s := 2e+(n+1)b ≥ 0
by [6, (3.3)]. We also note that g(X,L) = 2g(C)−1+e+b, d = Ln = 2e+b and h0(KX +(n−1)L) =
g(C) − 1 + e + b (see Remark 2.4). Hence we get the following type.

(α) g(C) = 2, e + b = 1, and g(X,L) = 4.

(β) g(C) = 1, e + b = 2, and g(X,L) = 3.

(γ) g(C) = 0, e + b = 3, and g(X,L) = 2.

(b.1) First we consider the case (α). Then d = 2e+b = 2−b and s = 2e+(n+1)b = 2n+(−n+1)d.
Since s ≥ 0, we have (n − 1)d ≤ 2n, that is

d ≤ 2 +
2

n − 1
.

Hence d ≤ 3 and if d = 3, then n = 3. Therefore we get the list in (A.1) of Theorem 3.1.

(b.2) Next we consider the case (β). Then by [22, (2.25) Theorem] we have 1 ≤ d ≤ 6. Since
d = 2e + b and e + b = 2, we have e = d− 2 and b = 4 − d. So we get the list in (A.2) of Theorem
3.1.

(b.3) Finally we consider the case (γ). Then g(X,L) = 2 and we can use Fujita’s classification of
(X,L) with g(X,L) = 2. There are 11 types in this case. For detail, see [6, (3.30) Theorem]. This
is the case (A.3) of Theorem 3.1.

(c) The case in which (X,L) is a classical scroll over a smooth projective surface S.
Let π : X → S be the Pn−2-bundle over S. Then there exists a vector bundle E of rank n − 1
on S such that X = PS(E) and L = H(E), where H(E) is the tautological line bundle of PS(E).
Then E is ample. By the canonical bundle formula, KX = π∗(KS + det(E))− (n− 1)H(E). Hence
KX + (n − 1)L = π∗(KS + det(E)) and we have

h0(KX + (n − 1)L) = h0(π∗(KS + det(E)))
= h0(KS + det(E))
= g(S, det(E)) − q(S) + pg(S).

Since h0(KX + (n − 1)L) = 2 > 0, we see that KX + (n − 1)L is nef by [8, Theprems (11.2)
and (11.7)] or [20, Theorem in Section 1]. Hence KS + det(E) is nef. Since 0 < Ln = H(E)n =
c1(E)2 − c2(E) and c2(E) > 0, we see that

c1(E)2 = Ln + c2(E) ≥ 2. (1)
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(c.1) Assume that κ(S) ≥ 0. Then χ(OS) ≥ 0, that is, h2(OS) − h1(OS) ≥ −1. Hence h0(KX +
(n − 1)L) ≥ g(S, det(E)) − 1, and g(S, det(E)) ≤ 3 because h0(KX + (n − 1)L) = 2.

(c.1.a) We assume that χ(OS) ≥ 1. Then g(S, detE) ≤ 2.

(c.1.a.1) If g(S, detE) ≤ 1, then κ(S) = −∞ by [7, Theorems (1.4) and (1.5)] and this is impossible.

(c.1.a.2) If g(S, detE) = 2, then (S, E) is the case (B.1) in Theorem 3.1 by [7, (2.25) Theorem].

(c.1.b) We assume that χ(OS) = 0. Then κ(S) = 0 or 1. On the other hand g(S, det(E)) = 3
since h0(KX + (n − 1)L) = 2. So by [9, Theorem 2.1] we have q(S) ≤ 3.

(c.1.b.1) Assume that q(S) = 3. Then by [9, Theorem 3.1], we see that κ(S) = 1 and (S, det(E)) ∼=
(E1 ×E2, E1 +E2), where E1 and E2 are smooth projective curves with g(E1) = 1 and g(E2) = 2.
Let p2 : S → E2 be the second projection. Then by [7, (2.14) Lemma] we have (p2)∗(E) is a
line bundle on E2 with δ = deg((p2)∗(E)) > 0 and c1(E)2 = 2rδ, where r = rank(E). But since
c1(E)2 = (E1 + E2)2 = 2 and r ≥ 2, this is impossible.

(c.1.b.2) Assume that q(S) ≤ 2.

(c.1.b.2.1) If κ(S) = 0, then S is birationally equivalent to an abelian surface or a bielliptic
surface because χ(OS) = 0.

(c.1.b.2.1.1) Assume that S is minimal. Since KSdet(E) = 0, we have (detE)2 = 4. Then (S, E)
is either the case (B.2) or the case (B.3) in Theorem 3.1.

(c.1.b.2.1.2) Assume that S is not minimal. Then by [21, (2.3) Theorem], S is a one point blowing
up of a smooth projective surface S′ such that S′ is minimal and det(E) = π∗(H) − 2E, where
π : S → S′ is the blowing up, E is the exceptional divisor and H is an ample line bundle on S′.
Then H2 = 6. Since rank(E) ≤ det(E)E = 2 we have rank(E) = 2, that is, n = 3 in this case.
Moreover the following holds.

Claim 3.1 E is indecomposable.

Proof. Assume that E is decomposable. We set E = L1 ⊕L2. Since E is ample, so are L1 and
L2. Moreover L1 + L2 = π∗(H) − 2E. Let Ai := π∗(Li) for i = 1, 2. Then each Ai is ample and
H = A1 + A2. Since κ(S′) = 0 and S′ is minimal, we have KS′Ai = 0 for i = 1, 2. Therefore
A2

i is a positive even number. Hence by the Hodge index theorem, we have A1A2 ≥ 2. Therefore
(H)2 ≥ 8 and this is a contradiction because (H)2 = 6. This completes the proof.

This (S, E) is the case (B.4) in Theorem 3.1.

(c.1.b.2.2) If κ(S) = 1, then by [21, (2.3) Theorem] we see that S is minimal. By the classification
theory of surfaces, there exists an elliptic fibration f : S → C over a smooth projective curve C.
Then q(S) = g(C) or q(S) = g(C) + 1. By the canonical bundle formula for elliptic fibrations, we
have KS = f∗(B) +

∑
i

(mi − 1)Fi for some line bundle B on C with deg B = χ(OS) − 2χ(OC) =

2g(C) − 2 + χ(OS), where miFi is a multiple fiber of f .

(c.1.b.2.2.1) First we consider the case where q(S) = g(C) + 1. Then f has no multiple fiber or
at least two multiple fibers (see [29, Lemma 1.6] and [30, Proposition 1.3]). On the other hand

7



since κ(S) = 1, we have KS(det(E)) > 0. As we said above (see (1)), (det(E))2 = c1(E)2 ≥ 2 holds.
Since g(S, det(E)) = 3, we get

KS(det(E)) = 1 or 2. (2)

(i) The case where q(S) = 2 and g(C) = 1.
Then KS ≡

∑
i(mi − 1)Fi because χ(OS) = 0. Hence f has at least two multiple fibers and we

get KS(det(E)) ≥ 2. Therefore by (2) we have KS(det(E)) = 2 and f has just two multiple fibers
and multiple fibers are 2F1 and 2F2. Moreover (det(E))Fi = 1 for i = 1, 2. This is the type (1) in
Table 1.

(ii) The case where q(S) = 1 and g(C) = 0.
Since χ(OS) = 0 by assumption (see (c.1.b)), we have KS ≡ −2F +

∑
i

(mi − 1)Fi, where F is a

general fiber of f . We see from (2) that KS(det(E)) = 1 or 2 holds. Since KS(det(E)) ≥ 1, we see
that f has at least three multiple fibers. Here we may assume that m1 ≥ m2 ≥ · · · hold. Since
miFi ≡ mjFj , we have

Fi det(E) ≤ Fj det(E) for every i < j. (3)

We note that F ≡ m1F1 ≡ m2F2. Hence

KS det(E) =

(∑
i

(mi − 1)Fi − 2F

)
det(E)

=

−F1 − F2 +
∑
i≥3

(mi − 1)Fi

 det(E). (4)

(ii.1) Assme that the number of multiple fibers is three. Then we see from (4) that KS det(E) =
(−F1 − F2 + (m3 − 1)F3) det(E). Since KS(det(E)) ≤ 2, we have m3 ≤ 5 by (3).

(ii.1.1) If m3 = 5, then F1 det(E) = F2 det(E) = F3 det(E) = 1 and m1 = m2 = 5. Hence
det(E)F = 5. This is the type (10) in Table 1.

(ii.1.2) If m3 = 4, then F3 det(E) = 2 or 1.

(ii.1.2.1) If F3 det(E) = 2, then det(E)F = 8. Since KS det(E) ≤ 2, we have F1 det(E) =
F2 det(E) = 2 and m1 = m2 = 4. In this case KS det(E) = 2.

Claim 3.2 This case cannot occur.

Proof. We use Proposition 2.1 and the notation in Proposition 2.1. Let det(E) = αN1 + βN2,
and KS ≡ ϵF , where α, β ∈ Z and ϵ ∈ Q. Then

KS(det(E)) = ϵµβ, (5)
(det(E))2 = β(2α + βδ). (6)

Here we prove the assertion of this claim. In this case, we see from (5) that µ = 4, ϵ = 1
4

and β = 2 since KS(det(E)) = 2. Hence by (6) we have 2 = (det(E))2 = 2(2α + 2δ). But this is
imposible because α and δ are integer. This completes the proof of this claim.

(ii.1.2.2) If F3 det(E) = 1, then det(E)F = 4. By (3) we have F1(det E) = F2 det(E) = 1 and
m1 = m2 = 4. In this case KS det(E) = 1. This is the case (11) in Table 1.

8



(ii.1.3) If m3 = 3, then 0 ≤ F3 det(E) − F1 det(E) ≤ 2.

(ii.1.3.1) If F3 det(E)−F1 det(E) = 0, then we see from (3) that F3 det(E) = F2 det(E) = F1 det(E).
But in this case KS det(E) = 0 and this is impossible because κ(S) = 1 and det(E) is ample.

(ii.1.3.2) If F3 det(E) − F1 det(E) = 1, then F3 det(E) − F2 det(E) = 0 or 1. Since

F1det(E) =
3

m1
F3det(E)

F2det(E) =
3

m2
F3det(E),

we have 1 = F3det(E) − F1det(E) =
(

m1−3
m1

)
F3det(E), that is,

F3det(E) = 1 +
3

m1 − 3
.

Therefore m1 = 4 or 6.
If F3det(E) − F2det(E) = 0, then m2 = m3 = 3.
If F3det(E) − F2det(E) = 1, then we have 1 = F3det(E) − F2det(E) =

(
m2−3

m2

)
F3det(E), that

is,

F3det(E) = 1 +
3

m2 − 3
.

Hence m2 = 4 or 6. Therefore we get the following types.

m1 m2 m3 F1 det(E) F2 det(E) F3 det(E)
6 6 3 1 1 2
6 3 3 1 2 2
4 4 3 3 3 4
4 3 3 3 4 4

These are the cases (12), (13), (14) and (15) in Table 1.

(ii.1.3.3) If F3 det(E) − F1 det(E) = 2, then we see that F3 det(E) = F2 det(E). Since F1det(E) =
3

m1
F3det(E), we have 2 = F3det(E) − F1det(E) =

(
m1−3

m1

)
F3det(E), that is,

F3det(E) = 2 +
6

m1 − 3
.

Hence m1 = 4, 5, 6 or 9. Therefore we obtain the following table.

m1 m2 m3 F1 det(E) F2 det(E) F3 det(E)
(a) 9 3 3 1 3 3
(b) 6 3 3 2 4 4
(c) 5 3 3 3 5 5
(d) 4 3 3 6 8 8

By the same argument as Claim 3.2, we see that the cases (b) and (d) cannot occur. The case
(a) (resp. (c)) is the case (16) (resp. (17)) in Table 1.

(ii.1.4) If m3 = 2, then KS det(E) = (−F1 − F2 + F3) det(E). In this case we have

F3 det(E) > F2 det(E) (7)
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(ii.1.4.1) Assume that KS det(E) = 2. Then

det(E)F3 = det(E)F1 + det(E)F2 + 2. (8)

Since m1F1 ≡ m2F2 ≡ 2F3, we have

det(E)F1 =
2

m1
det(E)F3, det(E)F2 =

2
m2

det(E)F3.

Hence we get

det(E)F3 =
2m1m2

(m1 − 2)(m2 − 2) − 4
. (9)

Here we note that m2 ≥ 3 because det(E)F3 > det(E)F2 by (7).

(ii.1.4.1.1) If m2 = 3, then by (9)

det(E)F3 = 6 +
36

m1 − 6
.

In this case, since

det(E)F1 =
2

m1
det(E)F3 =

12
m1 − 6

,

the following are possible.

m1 det(E)F1 det(E)F2 det(E)F3

(a) 7 12 28 42
(b) 8 6 16 24
(c) 9 4 12 18
(d) 10 3 10 15
(e) 12 2 8 12
(f) 18 1 6 9

By the same argument as Claim 3.2, we see that the cases (a), (b), (c) and (e) cannot occur.
The case (d) (resp. (f)) is the case (18) (resp. (19)) in Table 1.

(ii.1.4.1.2) If m2 = 4, then by (9)

det(E)F3 = 4 +
32

2m1 − 8
.

In this case, the following are possible.

m1 det(E)F1 det(E)F2 det(E)F3

(a) 5 8 10 20
(b) 6 4 6 12
(c) 8 2 4 8
(d) 12 1 3 6

By the same argument as Claim 3.2, we see that the cases (a), (b) and (c) cannot occur. The
case (d) is the case (20) in Table 1.

(ii.1.4.1.3) Assume that m2 ≥ 5. Then m1 ≥ 5. First we have

m1 det(E)F1 +m2 det(E)F2 = 2det(E)F3 + 2det(E)F3 = 4det(E)F3 = 4det(E)F1 + 4det(E)F2 + 8.
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(Note that we use (8) at the last equality.) Namely

(m1 − 4) det(E)F1 + (m2 − 4) det(E)F2 = 8. (10)

Hence

det(E)F1 + det(E)F2 ≤ (m1 − 4) det(E)F1 + (m2 − 4) det(E)F2 = 8.

Therefore (det(E)F1,det(E)F2) = (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 2), (2, 3),
(2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5) or (4, 4). Then we get the following possiblities by using
(10).

m1 m2 det(E)F1 det(E)F2 det(E)F3

(a) 8 8 1 1 4
(b) 10 5 1 2 5
(c) 6 6 2 2 6
(d) 5 5 4 4 10

By the same argument as Claim 3.2, we see that the cases (c) and (d) cannot occur. The case
(a) (resp. (b)) is the case (21) (resp. (22)) in Table 1.

(ii.1.4.2) Assume that KS det(E) = 1. Then

det(E)F3 = det(E)F2 + det(E)F1 + 1. (11)

Hence we find that

m1 det(E)F1 = 2det(E)F3 = 2det(E)F2 + 2det(E)F1 + 2, (12)
m2 det(E)F2 = 2det(E)F3 = 2det(E)F2 + 2det(E)F1 + 2. (13)

On the other hand, since det(E)F1 = (2/m1) det(E)F3 and det(E)F2 = (2/m2) det(E)F3, we see
from (11) that

det(E)F3 = (2/m1) det(E)F3 + (2/m2) det(E)F3 + 1.

Therefore (
1 − 2

m1
− 2

m2

)
det(E)F3 = 1,

that is,
det(E)F3 =

m1m2

(m1 − 2)(m2 − 2) − 4
.

Here we note that m2 ≥ 3 because m3 = 2 and det(E)F3 > det(E)F2 by (7).

(ii.1.4.2.1) First we consider the case in which m2 = 3. Then

det(E)F3 =
3m1

m1 − 6
= 3 +

18
m1 − 6

.

Then the following are possible.

m1 det(E)F1 det(E)F2 det(E)F3

7 6 14 21
8 3 8 12
9 2 6 9
12 1 4 6
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These are the cases (23), (24), (25) and (26) in Table 1.

(ii.1.4.2.2) Next we consider the case in which m2 = 4. Here we note that m1 ≥ 4. In this case
we have

det(E)F3 =
2m1

m1 − 4
= 2 +

8
m1 − 4

.

Then we get the following possible type.

m1 det(E)F1 det(E)F2 det(E)F3

5 4 5 10
6 2 3 6
8 1 2 4

These are the cases (27), (28) and (29) in Table 1.

(ii.1.4.2.3) Finally we consider the case in which m2 ≥ 5. Then m1 ≥ 5, and since KX det(E) = 1
and m3 = 2, we see from (12) and (13) that

det(E)F1 + det(E)F2 ≤ (m1 − 4) det(E)F1 + (m2 − 4) det(E)F2 = 4.

Therefore (det(E)F1,det(E)F2) = (1, 1), (1, 2), (1, 3), (2, 2). Since det(E)F3 = det(E)F1+det(E)F2+
1, (m1 − 4) det(E)F1 + (m2 − 4) det(E)F2 = 4 and m3 = 2, we get the following:

m1 m2 det(E)F1 det(E)F2 det(E)F3

6 6 1 1 3
5 5 2 2 5

These are the cases (30) and (31) in Table 1.

(ii.2) Assme that the number of multiple fibers is four. Then KS det(E) = (−F1 − F2 + (m3 −
1)F3 + (m4 − 1)F4) det(E). Since 1 ≤ KS det(E) ≤ 2, we have (m3,m4) = (4, 2), (3, 3), (3, 2), (2.2).

(ii.2.1) If (m3,m4) = (4, 2), then KS det(E) = (−F1 − F2 + 3F3 + F4) det(E) = 2 det(E)F3 +
(det(E)F3 − det(E)F1) + (det(E)F4 − det(E)F2) ≥ 2 det(E)F3 ≥ 2. Since KS det(E) ≤ 2, we have
det(E)F3 = 1, det(E)F3 = det(E)F1 and det(E)F4 = det(E)F2. Therefore det(E)F1 = det(E)F2 =
det(E)F3 = det(E)F4 = 1. But this is impossible.

(ii.2.2) If (m3,m4) = (3, 3), then the following holds by the same argument as in (ii.2.1).

m1 m2 m3 m4 KS det(E) det(E)F1 det(E)F2 det(E)F3 det(E)F4

3 3 3 3 2 1 1 1 1

This is the case (4) in Table 1.

(ii.2.3) Next we consider the case where (m3,m4) = (3, 2).

(ii.2.3.1) If (m3,m4) = (3, 2) and KS det(E) = 1, then we see that det(E)Fi = 1 for i = 1, 2, 3, 4.
But since m3 ̸= m4 this case cannot occur.

(ii.2.3.2) If (m3,m4) = (3, 2) and KS det(E) = 2, then we see that det(E)F4 = 1 or 2 because
2 det(E)F3 + det(E)F4 − det(E)F1 − det(E)F2 = 2.

(ii.2.3.2.1) If det(E)F4 = 2, then det(E)F = 4 because m4 = 2. But this is impossible because
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m3 = 3.

(ii.2.3.2.2) If det(E)F4 = 1, then det(E)F3 = det(E)F2 = det(E)F1 = 1 because det(E)Fi ≥
det(E)Fi−1. But this is impossible because m3 ̸= m4.

(ii.2.4) Assume that (m3, m4) = (2, 2). Then KS det(E) = (−F1 − F2 + F3 + F4) det(E) =
(F4 − F1) det(E) + (F3 − F2) det(E). Since 1 ≤ KS det(E) ≤ 2, we see from (3) that

((F4 − F1) det(E), (F3 − F2) det(E)) = (2, 0), (1, 1), (1, 0).

(ii.2.4.1) If (F3 −F2) det(E) = 0, then (F2 −F1) det(E) > 0 and in this case we have the following
table.

m1 m2 m3 m4 KS det(E) det(E)F1 det(E)F2 det(E)F3 det(E)F4

(a) 6 2 2 2 2 1 3 3 3
(b) 4 2 2 2 2 2 4 4 4
(c) 3 2 2 2 2 4 6 6 6
(d) 4 2 2 2 1 1 2 2 2
(e) 3 2 2 2 1 2 3 3 3

By the same argument as Claim 3.2, we see that the cases (b) and (c) cannot occur. The case
(a) (resp. (d), (e)) is the case (5) (resp. (6) and (7)) in Table 1.

(ii.2.4.2) If (F3 − F2) det(E) = 1, then (F3 − F2) det(E) > 0 and (F2 − F1) det(E) = 0. Hence in
this case we have the following table.

m1 m2 m3 m4 KS det(E) det(E)F1 det(E)F2 det(E)F3 det(E)F4

4 4 2 2 2 1 1 2 2
3 3 2 2 2 2 2 3 3

These are the cases (8) and (9) in Table 1.

(ii.3) Assume that the number of multiple fibers is greater than or equal to five.
First we see from (3) that we have

KS det(E) ≥

(m3 − 2)F3 + (m4 − 2)F4 +
∑
i≥5

(mi − 1)Fi

det(E). (14)

(ii.3.1) The case where KS(det(E)) = 2.
Then by (14) we get m5 ≤ 3. Assume that m5 = 3. Then since m1 ≥ m2 ≥ · · · hold, we see that
mi ≥ 3 for i = 1, 2, 3, 4, and by (14) we have

KS(det(E)) ≥

F3 + F4 +
∑
i≥5

(mi − 1)Fi

 det(E) ≥ 4

and this is a contradiction. Hence m5 = 2, and since KS(det(E)) ≥ F5 det(E), we have det(E)F5 = 2
or 1.

(ii.3.1.1) If det(E)F5 = 2, then the equality in (14) holds. So m3 = 2, m4 = 2 and m5 = 2, and
det(E)F1 = det(E)F2 = det(E)F3 = det(E)F4. Hence mi = 2 and (det(E))Fi = 2 for every i. But
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by the same argument as Claim 3.2, we see that this case does not occur.

(ii.3.1.2) If det(E)F5 = 1, then the number of multiple fibers is at most six.

(ii.3.1.2.1) If the number of its multiple fibers is six, then m6 = 2 and the equality in (14) holds.
Hence m3 = 2, m4 = 2, det(E)F1 = · · · = det(E)F4. Therefore mi = 2 for every integer i with
1 ≤ i ≤ 6.

(ii.3.1.2.2) If the number of its multiple fibers is five, then det(E)F = det(E)(2F5) = 2, det(E)F1 =
· · · = det(E)F4 = 1 and m1 = · · · = m4 = 2. On the other hand

KS det(E) =

−F1 − F2 +
∑
i≥3

(mi − 1)Fi

 det(E)

= ((m3 − 2)F3 + (m4 − 2)F4 + F5) det(E)
= 1.

But this is a contradiction.

Therefore if det(E)F5 = 1, then the number of its multiple fibers is six and (m1, . . . ,m6) =
(2, . . . , 2). This is the case (2) in Table 1.

(ii.3.2) The case where KS(det(E)) = 1.
Then the number of its multiple fibers is five and m5 = 2 and det(E)F5 = 1. So we have det(E)F1 =
· · · = det(E)F5 = 1 and m1 = · · · = m5 = 2. This is the case (3) in Table 1.

(c.1.b.2.2.2) Next we consider the case where q(S) = g(C). Then since χ(OS) = 0 by assumption
(see (c.1.b)) and q(S) ≤ 2 (see (c.1.b.2)), we have 1 ≤ q(S) ≤ 2.

(i) The case where q(S) = 2 and g(C) = 2.
Then KS det(E) = (2F +

∑
(mi − 1)Fi) det(E). Since KS det(E) ≤ 2, we have KS det(E) = 2,

F det(E) = 1 and f has no multiple fiber. In this case (det(E))2 = 2. This is the case (32) in Table
1.

(ii) The case where q(S) = 1 and g(C) = 1.

Then KS det(E) =

(∑
i

(mi − 1)Fi

)
det(E).

(ii.1) If KS det(E) = 1, then f has one multiple fiber 2F1 and det(E)F1 = 1. This is the case (33)
in Table 1.

(ii.2) If KS det(E) = 2, then one of the following types can occur.

(ii.2.1) f has two multiple fibers 2F1, 2F2 and det(E)F1 = det(E)F2 = 1. This is the case (34) in
Table 1.

(ii.2.2) f has one multiple fiber 2F1 and det(E)F1 = 2. This is the case (35) in Table 1.

(ii.2.3) f has one multiple fiber 3F1 and det(E)F1 = 1. This is the case (36) in Table 1.

(c.2) Assume that κ(S) = −∞.
Then h0(KX + (n − 1)L) = g(S, det(E)) − q(S). Hence
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g(S, det(E)) = q(S) + 2. (15)

Here we note that (S, det(E)) is not a scroll over a smooth curve because det(E)B ≥ 2 for every
rational curve B on S. Therefore by [10, Lemma 1.16] we have g(S, det(E)) ≥ 2q(S) and q(S) ≤ 2.
On the other hand since KS + det E is nef, we have

0 ≤ (KS + det(E))2

= K2
S + 4g(S, det(E)) − 4 − (det(E))2. (16)

If q(S) > 0, then K2
S ≤ 8(1 − q(S)). Hence we have

0 ≤ 8(1 − q(S)) + 4(g(S, det(E)) − 1) − (det(E))2 (17)
= 4(g(S, det(E)) − 2q(S)) + 4 − (det(E))2.

Here we will divide three cases.

(c.2.1) The case where q(S) = 2.
Since we see from (15) that g(S, det(E)) = 2q(S) in this case, we have (det(E))2 ≤ 4 from (17).
We note that there exists a fiber space h : S → C over a smooth projective curve C with g(C) =
q(S) = 2 such that any general fiber of h is P1 since q(S) > 0.

(c.2.1.1) We consider the case where S is minimal. Then there exists a vector bundle F of rank
two on C such that F is normalized and S ∼= PC(F). Let C0 be the minimal section of h : S → C.
We set f := −degF . Then C2

0 = −f and KS ≡ −2C0+(2−f)F . We can write det(E) ≡ aC0+bF ,
where F is a general fiber of h. Since det(E) is ample, we get the following (see [18, Corollary 2.18
and Proposition 2.21 in Chapter V]).

(a) If f ≥ 0, then a > 0 and b > af .

(b) If f < 0, then a > 0 and b > (1/2)af .

We also note that (det(E))2 = a(2b − af). Since a = det(E)F ≥ 2, we have (det(E))2 = 2, 3, 4.

(c.2.1.1.1) Assume that (det(E))2 = 2. Then since a ≥ 2 and 2b − af ≥ 1, we have a = 2 and
2b − af = 1. Therefore 1 = 2b − af = 2(b − f) but this is impossible.

(c.2.1.1.2) Assume that (det(E))2 = 4. Then a = 2 or 4. If a = 4, then 2b − af = 1. But then
1 = 2b − af = 2b − 4f and this is also impossible. Therefore a = 2 and b − f = 1.

(c.2.1.1.3) Assume that (det(E))2 = 3. Then we have a = 3 and 2b − af = 1. In particular
2b− 3f = 1. If f ≥ 0, then from (a) above, we have b > af = 3f and 6f − 3f < 2b− 3f = 1, that
is, f ≤ 0. Therefore f = 0. On the other hand, we see that b ̸∈ Z because 2b − 3f = 1. Therefore
we have f < 0. Since (det(E))2 = 3 and S is minimal, we have (KS + det(E))2 = 1. We note that
KS +det(E) ≡ (a−2)C0+(2+b−f)F . So we have (KS +det(E))2 = −(a−2)2f +2(a−2)(2+b−f).
Since a = 3 and 2b− 3f = 1, we have (KS +det(E))2 = 2b− 3f +4 = 5 and this is also impossible.

Therefore (det(E))2 = 4, a = 2 and b− f = 1. Then the rank of E is two because det(E)F = 2.
Hence n = 3. In this case L3 + c2(E) = (det(E))2 = 4. Here we note that h∗h∗(E ⊗ H(F)−1) →
E⊗H(F)−1 is surjective. Since h0((E⊗H(F)−1)|Fh

) = h0(OP1 ⊕OP1) = 2 for any fiber Fh of h, we
see that h∗(E ⊗H(F)−1) is a locally free sheaf of rank two. Therefore the above homomorphism is
an isomorphism. Let G := h∗(E ⊗H(F)−1). Then E ∼= h∗(G)⊗H(F). We note that deg G = f +1
because det(E) = 2H(F) + (deg G)F . Since c2(E) = c2(h∗(G) ⊗ H(F)) = deg G − f = 1, we have
L3 = c1(E)2 − c2(E) = 3.
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Since det E is ample, we get the following: If f < 0, then we have f ≥ −g(C) (see [27]), that is,
f = −1, −2. If f ≥ 0, then by (a) above we have f + 1 > 2f . Namely we have f = 0. Therefore
f = 0, −1, −2 and deg G = 1, 0, −1 respectively.

Next we prove the following.

Claim 3.3 If f ≤ −1, then F and G are semistable.

Proof. Assume that G is not semistable. Then there exists a quotient line bundle Q of G
such that µ(G) > µ(Q), where µ(G) = deg(G)/rank(G) and µ(Q) = deg(Q)/rank(Q). Here we
note that µ(Q) = c1(Q) and µ(G) = (1/2)c1(G). Hence 0 < µ(G) − µ(Q) = (1/2)c1(G) − c1(Q).
Namely 2c1(Q) < c1(G) = f + 1 ≤ 0. Then since G → Q → 0 is exact, h∗(G) ⊗ H(F) →
h∗(Q)⊗H(F) → 0 is also exact. Since E = h∗(G)⊗H(F) is ample, so is h∗(Q)⊗H(F). Therefore
0 < c1(h∗(Q)⊗H(F))2 = (H(F)+c1(Q)F )2 = −f +2c1(Q) ≤ 0. But this is impossible. Therefore
G is semistable.

Next we consider the semistability of F . Let Q′ be a quotient line bundle of F and let Z be the
section of h corresponding to Q′. Then 0 < c1(E)Z = (2H(F) + (f + 1)F )Z = 2c1(Q′) + f + 1 ≤
2c1(Q′). Namely c1(Q′) > 0. Since degF = −f , we see that µ(Q′)−µ(F) = c1(Q′)−(1/2)c1(F) ≥
1 + 1

2f ≥ 0 because f = −1 or −2. Therefore F is semistable. This completes the proof.

This is the case (B.6) in Theorem 3.1.

(c.2.1.2) Next we consider the case where S is not minimal.
Then from (17) we have 1 ≤ (det(E))2 ≤ 3.

Assume that (det(E))2 = 1 (resp. 2, 3). Then we see from (16) that −11 ≤ K2
S ≤ −9 (resp.

−10 ≤ K2
S ≤ −9, K2

S = −9). Since g(S, det(E)) = 4, we have KS det(E) = 5 (resp. 4, 3). Hence
(2KS + det(E))2 = 4K2

S + 4KS det(E) + (det(E))2 < 0, that is, 2KS + det(E) is not nef. Therefore
there exists an extremal rational curve E on S such that (2KS + det(E))E < 0. Since q(S) = 2,
we see that E is a (−1)-curve. Hence KSE = −1 and det(E)E = 1. But this is impossible.

(c.2.2) The case where q(S) = 1.
Since g(S, det(E)) = q(S) + 2 = 3, by [21, (2.3) Theorem (V)] we get the nine types. This is the
case (B.7) in Theorem 3.1.

(c.2.3) The case where q(S) = 0.
Since g(S, det(E)) = q(S) + 2 = 2, by [7, (2.25) Theorem] we get the three types 4), 50) and 51).
For detail, see [7, (2.25) Theorem]. This is the case (B.8) in Theorem 3.1.

(d) If (M,A) is (P4,OP4(2)) (resp. (Q3,OQ3(2)), (P3,OP3(3))), then by (d.1) (resp. (d.2), (d.3)) in
the proof of [14, Theorem 2.2] we have h0(KX + 3L) = 5 (resp. h0(KX + 2L) = 5, h0(KX + 2L) =
10). So these cases cannot occur. Next we consider the case in which (M,A) is a P2-bundle over
a smooth curve with LF

∼= OP2(2) for any fiber F .
Here we use notation in [14, Theorem 2.2]. By (d.4) in the proof of [14, Theorem 2.2], we have
g(C) = 1. Then h0(KX +2L) = e, that is e = 2. Moreover g(X,L) = 1+ e+2−2g(C) = 3. Hence
by [22, (3.4) Theorem (II)], we see that X ∼= PC(E), E = π∗O(KX + 2L) is a stable vector bundle
of rank three with c1(E) = 2 and L = 2H(E) + π∗B, where B ∈ Pic(C) with det(E) + 2B = 0,
where π : PC(E) → C is the natural map. This is the case (C) in Theorem 3.1.

Therefore we get the assertion.

Remark 3.1 Here we consider an example of some types in Theorem 3.1.
(a) There exists an example of the type (A.2) if d = 3, 4 or 6. See [22, (2.4)].
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(b) There exists an example of each case in (A.3). See [6, from (3.15) to (3.29)].

(c) An example of the type (B.2) in Theorem 3.1 (see also [11, Example 4.7]).
First let E be a smooth elliptic curve. Then there exists an indecomposable and ample vector
bundle G of rank two on E such that c1(G) = 1. Let S := E ×E′, where E′ is an arbitrary smooth
elliptic curve. We set E := p∗1(G)⊗p∗2(D), where pi is the natural projection and D is a line bundle
with deg D = 1. Then this (S, E) is an example of the type (B.2) in Theorem 3.1.

(d) An example of the type (B.3) in Theorem 3.1.
First we note that there exist smooth elliptic curves A and B, and an abelian group G such that
S ∼= (A × B)/G. Then the types of G and the basis of Num(S) are the following (see [28, Tables
1 and 2]).

G Num(S)
Z2 (1/2)A, B

Z2 × Z2 (1/2)A, (1/2)B
Z4 (1/4)A, B

Z4 × Z2 (1/4)A, (1/2)B
Z3 (1/3)A, B

Z3 × Z3 (1/3)A, (1/3)B
Z6 (1/6)A, B

We also note that AB = γ, where γ := |G|. First we claim the following.

Claim 3.4 E is indecomposable.

Proof. Assume that E is decomposable. Then c1(det E) = L1 + L2 for two ample line bundles
L1 and L2 on S. Let αA and βB be the basis of Num(S), where α, β ∈ Q. Then the above table
shows that αβγ = 1. Let Li := xiαA + yiβB for i = 1, 2. Then xi > 0 and yi > 0 by [28, Lemma
1.3]. Hence L2

i = 2xiyi ≥ 2 and c1(E)2 = L2
1 + L2

2 + 2L1L2 > 4. But this is a contradiction. Hence
E is indecomposable.

Here let G = Z2. Set S := (A×B)/G, where G acts on A×B componentwise. Then there exist
two fiber spaces Φ : S → A/G and Ψ : S → B/G such that A/G is a smooth elliptic curve and
B/G is a smooth rational curve. Here we note that any smooth fiber of Φ (resp. Ψ) is isomorphic
to B (resp. A). We also note that AB = 2. Then we can take an indecomposable ample vector
bundle F of rank two on A/G such that c1(F) = 1. Moreover Ψ has a multiple fiber 2F ′ whose
multiplicity is two (see [28, Table 2 in Theorem 1.4]). Then we set E := Φ∗(F)⊗O(F ′). Then we
prove the following.

Claim 3.5 E is ample.

Proof. Let π1 : PA/G(F) → A/G. Then there exists a morphism q1 : PS(Φ∗(F)) → PA/G(F)
such that Φ ◦ π = π1 ◦ q1, where π : PS(Φ∗(F)) → S. Then q∗1H(F) = H(Φ∗(F)). On the other
hand i : PS(E) → PS(Φ∗(F)) is an isomorphism and i∗(H(E)) ⊗ π∗O(−F ′) = H(Φ∗(F)) (see [18,
Lemma 7.9 in Chapter II]). Therefore E is ample if and only if H(Φ∗(F)) ⊗ π∗O(F ′) is ample.

Here we note that 2q∗1H(F)⊗π∗O(2F ′) = 2q∗1H(F)⊗ r∗O(P ) for some point P ∈ B/G, where
we set r := Ψ ◦ π : PS(Φ∗(F)) → S → B/G. Let H := 2q∗1H(F) ⊗ r∗O(P ). Then it suffices
to show that H is ample because H(Φ∗(F)) ⊗ π∗O(F ′) = q∗1H(F) ⊗ π∗O(F ′). Here we use [5,
Theorem B6 in Appendix B]. Let Y be an irreducible subvariety of PS(Φ∗(F)). Here we note that
dim PS(Φ∗(F)) = 3.
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(1) Assume that dimY = 3. Since H(F) and O(P ) are ample, we see that h0(mH) > 0 for m ≫ 0
and |mH| has a nonzero effective divisor.

(2) Assume that dim Y = 2.

(2.1) If r(Y ) is not a point, then r(Y ) = B/G. For some m ≫ 0, we have Bs|2mH(F)| = ∅
and Bs|O(mP )| = ∅. Hence by Bertini’s theorem, there exist D1 ∈ |q∗1(2mH(F))| and D2 ∈
|r∗(O(mP ))| such that D1 ̸⊃ Y and D2 ̸⊃ Y . Since r(Y ) = B/G, we have D2 ∩ Y ̸= ∅. Therefore
D1 + D2 ∈ |(mH)|Y | is a nonzero effective divisor.

(2.2) If r(Y ) is a point, then Y is contained in a fiber of r. Let F = π(Y ). Then F and Φ(F ) are
curves. Namely Φ(F ) = A/G. Since Φ ◦ π = π1 ◦ q1 and Φ ◦ π(Y ) is not a point, we see that q1(Y )
is not a point. Hence by the same argument as in the case (2.1) we see that for m ≫ 0 there exist
D1 ∈ |q∗1(2mH(F))| and D2 ∈ |r∗(O(mP ))| such that D1 ̸⊃ Y and D2 ̸⊃ Y . Moreover D1 ∩Y ̸= ∅
because D1 is ample. Therefore D1 + D2 ∈ |mH|Y | is a nonzero effective divisor.

(3) Assume that dim Y = 1.

(3.1) If Y is not contained in any fiber of r, then by the same method as in the case (2.1) above,
|mH|Y | has a nonzero effective divisor for m ≫ 0.

(3.2) Assume that Y is contained in a fiber of r.

(3.2.1) If π(Y ) is a curve, then by the same argument as in the case (2.1), we see that |mH|Y | has
a nonzero effective divisor for m ≫ 0.

(3.2.2) If π(Y ) is a point, then Y is a fiber of π. We also note that q1(Y ) is a curve by construction.
Here we take a positive integer m such that Bs|2mH(F)| = ∅ and Bs|O(mP )| = ∅. Then there
exist D1 ∈ |q∗1(2mH(F))| and D2 ∈ |r∗(O(mP ))| such that D1 ̸⊃ Y and D2 ̸⊃ Y . Moreover
D1 ∩ Y ̸= ∅. Therefore D1 + D2 ∈ |mH|Y | is a nonzero effective divisor.

Hence we see from the above argument that mH is ample, that is, H is ample. This implies
that E is also ample.

We note that c1(E) = Φ∗c1(F) + 2F ′ and c1(E)2 = 4. Therefore this (S, E) is an example of
(B.3) in Theorem 3.1.

(e) We consider the case (B.5) in Theorem 3.1.

(e.1) First we consider the case where q(X) = 2 and g(C) = 1. Let α : S → Alb(S) be the
Albanese map of S. Since q(S) = 2, we have dimAlb(S) = 2. Assume that dim α(S) = 1. Then
α(S) is a smooth curve of genus 2 and α : S → α(S) is a fiber space. Since κ(S) = 1, we see
that any general fiber of α is an elliptic curve. Here we note that for any general fiber F of
f : S → C, α(F ) is a point because g(α(S)) = 2. Hence by [1, Lemma 4.1.13], there exists a
morphism δ : C → α(S) such that α = δ ◦ f . But this is impossible because g(C) < g(α(S)).
Hence dim α(S) = 2. Namely α is surjective. For any general fiber F of f , α(F ) is a curve. We
also note that α(F ) is a complex subtorus of Alb(S) (see [31, Theorem 10.3]). Let H := α(F ) for
a fixed general fiber F of f . We consider π : Alb(S) → Alb(S)/H. Here we note that Alb(S)/H is
an Abelian variety of dimension 1, that is, a smooth elliptic curve (see also [23, (4.2) Proposition
in Chapter 2 and (1.1) Proposition in Chapter 4]). Then since FF ′ = 0 for any general fiber F ′

of f and (π ◦ α)(F ) is a point, we infer that (π ◦ α)(F ′) is a point. Hence there exists a morphism
ι : C → Alb(S)/H such that π ◦ α = ι ◦ f . Since any fiber of f is irreducible in this case (see [29,
Lemmas 1.5 and 1.6]), we see that α is finite. Moreover since mulitplicity of every multiple fiber
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of f is 2, we also see that deg α = 2. Therefore S is a double cover of an Abelian surface.

(e.2) Next we consider the case where q(S) = 1 and g(C) = 0. Then this case corresponds to one of
the cases from (2) to (31) in Table 1. We use Proposition 2.1 and the notation in this proposition.
Then by Proposition 2.1 the generators of Num(S) are N1 = (1/2)F and N2 = (2/γ)D + (δ/4)F .
Let det E = αN1 + βN2 and let KS ≡ ϵF . Then by (5) and (6) in Claim 3.2 we have

(det(E))2 = β(2α + βδ),
KS(det(E)) = ϵµβ,

First we consider the case of (2) in Table 1.
In this case µ = 2. Since KS ≡ F , we have 2 = KS(det E) = 2β because DF = γ. Hence β = 1.
We also note that

2 = (det E)2 = (2α + βδ)β = 2α + δ.

Since δ = 0 or 1 by definition, we see that if δ = 1, then this is impossible because 2 = 2α + δ.
Hence δ = 0 and α = 1.

By the same argument as above, we can get (µ, ϵ, α, β, δ) for other cases. See the Table 2 below.

(f) We consider the case (B.6) in Theorem 3.1.

(f.1) An example of the case where deg(F) = 0.
First let F be a normalized vector bundle on C with degF = 0. Then H(F) is nef. Let G be
a stable vector bundle of rank two on C with deg G = 1. This vector bundle always exists (see
e.g. [26, Theorem 8.6.1]). Then we note that G is ample (see [25, Main Claim in p.62]). Let
E := h∗(G)⊗H(F). Then E is ample by the method similar to [7, (2.6)] and this is an example of
the case where deg(F) = 0.

(f.2) An example of the case where deg(F) = 1.
First let F be a normalized vector bundle on C with degF = 1. Then H(F) is ample. Let
E := H(F) ⊕ H(F) and this is an example of the case where deg(F) = 1.

(f.3) Finally we consider the case where deg(F) = 2.
Let F and G be semistable vector bundles on C such that degF = 2 and deg G = −1. (Here we
note that these vector bundles always exist. See e.g. [26, Theorem 8.6.1].) Let E := h∗(G)⊗H(F).
Then E is ample by the method similar to [7, (2.6)].

(g) There exists an example of each case in (B.8). See [7].

(h) There exists an example of each case in (C). See [22, (3.3)].

Finally we note that, as we said at the beginning of this section, we can get a classification of
polarized 3-folds (X,L) with h0(KX + 2L) = 2 from Theorem 3.1.

Corollary 3.1 Let (X,L) be a polarized manifold of dimension 3. If h0(KX + 2L) = 2, then
(X,L) is one of the types in Theorem 3.1.

4 Final remarks

Let (X,L) be a polarized manifold of dimension n ≥ 3. In [12] and [13], for every integer i with
0 ≤ i ≤ n, we introduced new invariants of (X,L), the ith sectional geometric genus gi(X,L)
and the ith sectional H-arithmetic genus χH

i (X,L), which play important roles in the study of the
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Table 2: The case where q(S) = 1 and g(C) = 0.
The case in Table 1 µ ϵ α β δ

(2) 2 1 1 1 0
(3) 2 1/2 1 1 1
(4) 3 2/3 1 1 0
(5) 6 1/3 1 1 0
(6) 4 1/2 1 1 0
(7) 6 1/3 1 1 0
(8) 4 1/4 1 1 1
(9) 6 1/6 1 1 1
(10) 5 2/5 1 1 0
(11) 4 1/4 1 1 1
(12) 6 1/3 1 1 0
(13) 6 1/6 1 1 0
(14) 12 1/6 1 1 0
(15) 12 1/12 1 1 1
(16) 9 2/9 1 1 0
(17) 15 2/15 1 1 0
(18) 30 1/15 1 1 0
(19) 18 1/9 1 1 0
(20) 12 1/6 1 1 0
(21) 8 1/4 1 1 0
(22) 10 1/5 1 1 0
(23) 42 1/42 1 1 1
(24) 24 1/24 1 1 1
(25) 18 1/18 1 1 1
(26) 12 1/12 1 1 1
(27) 20 1/20 1 1 1
(28) 12 1/12 1 1 1
(29) 8 1/8 1 1 1
(30) 6 1/6 1 1 1
(31) 10 1/10 1 1 1
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dimension of global sections of adjoint bundle (see [14] and [15]). In particular, the author proved
Conjecture 1.1 for dimX = 3 by using the theory of these invariants.

In [12, Conjecture 4.1] and [13, Conjecture 2.1], we proposed the following conjecture.

Conjecture 4.1 Let (X,L) be a polarized manifold of dimension n. Then the following hold.

(1) gi(X,L) ≥ hi(OX) for n ≥ 2 and 0 ≤ i ≤ n.

(2) χH
2 (X,L) > 0 holds if n ≥ 3 and κ(KX + (n − 2)L) ≥ 0.

Remark 4.1 We note that by definition

χH
2 (X,L) = 1 − h1(OX) + g2(X,L)

holds. Hence Conjecture 4.1 (2) implies that g2(X,L) ≥ h1(OX) if n ≥ 3 and κ(KX +(n−2)L) ≥ 0.

In [14, Theorem 3.1.1], we proved the following which shows a relation between Conjecture 1.1
and Conjecture 4.1.

Theorem 4.1 If n ≥ 4 and Conjecture 4.1 is true, then Conjecture 1.1 is true.

Concerning this result, we can also prove the following.

Theorem 4.2 Let (X,L) be a polarized manifold of dimension n. Assume that n ≥ 4 and Con-
jecture 4.1 is true. If h0(KX + (n − 1)L) ≤ 2, then κ(KX + (n − 2)L) = −∞.

Proof. We use an invariant Ai(X,L) which was defined in [16, Definition 3.2]. This invariant
has the following properties.

(A) (See [16, Proposition 3.2 and Remark 3.2].) For every integer i with 1 ≤ i ≤ n, we have
Ai(X,L) = gi(X,L) + gi−1(X,L)−hi−1(OX) and A0(X,L) = Ln. In particular An(X,L) =
h0(KX + L).

(B) (See [16, Corollary 3.1].) For every positive integer t, we have

h0(KX + tL) =
n∑

j=0

(
t − 1
n − j

)
Aj(X,L).

From (B) above, we have

h0(KX + (n − 1)L) =
n∑

j=2

(
n − 2
n − j

)
Aj(X,L).

Assume that κ(KX + (n − 2)L) ≥ 0. Then from (A) above and the assumption that Conjecture
4.1 holds, we see that Aj(X,L) ≥ 0 for every integer j with 3 ≤ j ≤ n and A2(X,L) ≥ g1(X,L).
Here we note that g1(X,L) is the sectional genus of (X,L) (see [12, Remark 2.1.1 (1)]). Hence
h0(KX + (n − 1)L) ≥ g1(X,L). So we get g1(X,L) ≤ 2 by assumption. On the other hand, since
κ(KX + (n − 2)L) ≥ 0, we have g1(X,L) = 1 + (1/2)(KX + (n − 1)L)Ln−1 ≥ 2 because Ln > 0
and g1(X,L) is an integer. Therefore g1(X,L) = 2. By [6, (1.10) Theorem] and [14, Theorem 1.6
and Remark 1.7], we see that (X,L) is one of the types (I), (II) and (III) in [14, Theorem 1.6].
If (X,L) is the type (I) in [14, Theorem 1.6], then

gi(X,L) =
{

0 for every integer i with 4 ≤ i ≤ n,
1 if i = 3, (18)

hj(OX) = 0 for every integer j with 1 ≤ j ≤ n. (19)

21



Moreover by Conjecture 4.1 we have g2(X,L) ≥ 0. Therefore

A2(X,L) = g2(X,L) + g1(X,L) − h1(OX) ≥ 2 (20)
A3(X,L) = g3(X,L) + g2(X,L) − h2(OX) = g2(X,L) + 1 ≥ 1 (21)
A4(X,L) = g4(X,L) + g3(X,L) − h3(OX) = 1 (22)
Aj(X,L) = 0 for every integer j with 4 ≤ j ≤ n. (23)

Hence by (20), (21), (22) and (23) we have

h0(KX + (n − 1)L) =
n∑

j=0

(
n − 2
n − j

)
Aj(X,L)

= A2(X,L) + (n − 2)A3(X,L) +
(

n − 2
2

)
A4(X,L)

≥ 2 +
(

n − 1
2

)
≥ 5.

If (X,L) is of the type (II) in [14, Theorem 1.6], then KX + (n− 1)L = π∗(OPn(1)). (Here we use
the notation in [14, Theorem 1.6].) Hence

h0(KX + (n − 1)L) = h0(π∗(OPn(1)))
= h0(OPn(1) ⊕OPn(−2))
= h0(OPn(1))
= n + 1 ≥ 5.

Hence this contradicts the assumption.
If (X,L) is of the type (III) in [14, Theorem 1.6], then (X,L) is a simple blowing up of a

polarized manifold (X ′, L′) which is of the type (II) in [14, Theorem 1.6]. Since h0(KX +(n−1)L) =
h0(KX′ + (n − 1)L′), by the argument above we get

h0(KX + (n − 1)L) = h0(KX′ + (n − 1)L′)
= n + 1 ≥ 5.

Hence this also contradicts the assumption. Therefore we get the assertion.

Remark 4.2 In [6, Remark (2.2)] Fujita conjectured that h0(L) > 0 if (X,L) is the type (I) in
[14, Theorem 1.6]. Here we note that h0(L) > 0 if and only if g2(X,L) ≥ 3 − n.

Proof. Since

h0(L) = h0(KX + (n − 2)L) =
n∑

j=0

(
n − 3
n − j

)
Aj(X,L),

by (21), (22) and (23) we have

h0(L) = A3(X,L) + (n − 3)A4(X,L) = g2(X,L) + n − 2.

Therefore we get the assertion.

In particular, if we can prove that g2(X,L) ≥ 0, then this conjecture is true.

By Theorem 4.2 we get the following.

Corollary 4.1 Let (X,L) be a polarized manifold of dimension n ≥ 4. Assume that Conjecture
4.1 is true. If h0(KX + (n − 1)L) = 2, then (X,L) is one of the types in Theorem 3.1.
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5 Appendix

Here we consider the case of n = 3. By [14, Theorem 2.3], we see that if κ(KX + L) ≥ 0, then
h0(KX + 2L) ≥ 3. So it is interesting to consider a classification of polarized 3-folds (X,L) with
κ(KX + L) ≥ 0 and h0(KX + 2L) = 3. In this case, we can prove the following.

Theorem 5.1 Let (X,L) be a polarized 3-fold. Assume that κ(KX +L) ≥ 0. Then h0(KX +2L) =
3 if and only if (X,L) satisfies the following.

(∗) OX(KX) = OX , L3 = 1, h0(L) = 1 and q(X) = 0.

Proof. (A) We are going to prove the “only if” part. First we note that

g1(X,L) ≥ 2 (24)

because κ(KX + L) ≥ 0. We also note that the following inequality holds by [13, Theorem 3.2.1
and Theorem 3.3.1 (2)].

g2(X,L) ≥ h1(OX) (25)

Furthermore we can get the following.

Claim 5.1 h0(KX + L) > 0 holds.

Proof. First of all, by a result of Höring the following holds.

Theorem 5.2 ([19]) Let (X,L)be a polarized 3-fold. If KX +L is nef, then h0(KX +L) > 0 holds.

By the assumption that n = 3 and κ(KX + L) ≥ 0, Theorem 2.1 implies that there exist a
polarized 3-fold (M,A) and a birational morphism µ : X → M such that the following properties
hold.

(1) h0(KX + L) = h0(KM + A).

(2) KM + A is nef.

Moreover by the condition (2) above and Theorem 5.2, we have h0(KM + A) > 0. Therefore
the condition (1) above implies that h0(KX + L) > 0 holds.

Since
3 = h0(KX + 2L) = h0(KX + L) + g1(X,L) + g2(X,L) − h1(OX)

by [14, Theorem 2.1], we see from (24), (25) and Claim 5.1 that (X,L) satisfies the following.

g1(X,L) = 2, h0(KX + L) = 1, g2(X,L) = h1(OX).

By [14, Theorem 1.6 and Remark 1.7] we see that (X,L) is (I), (II) or (III) in [14, Theorem
1.6].

(A.1) If (X,L) is the type (II) or the type (III) in [14, Theorem 1.6], then h3(OX) = 0, h2(OX) = 0,
and h0(KX +L) = 1. Hence g2(X,L) = 1 by [14, Theorem 1.1 (2)]. On the other hand h1(OX) = 0
in these cases. Therefore g2(X,L) ̸= h1(OX) and the types (II) and (III) in [14, Theorem 1.6] do
not occur.

(A.2) If (X,L) is the type (I) in [14, Theorem 1.6], then (X,L) satisfies (∗) in Theorem 5.1.

(B) Next we are going to prove the “if” part. We assume that (X,L) satisfies (∗) in Theorem 5.1.
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Then we can easily check that h0(KX + L) = h0(L) = 1 and κ(KX + L) ≥ 0. Moreover by [14,
Theorem 1.1 (2)] and the Serre duality, we have

g2(X,L) = h0(KX + L) − h3(OX) + h2(OX)
= h0(L) − h0(OX) + h1(OX) = 0.

Moreover we have
g1(X,L) = 1 +

1
2
(KX + 2L)L2 = 1 + L3 = 2.

Therefore

h0(KX + 2L) = h0(KX + L) + g1(X,L) + g2(X,L) − h1(OX)
= 1 + 2 + 0 − 0 = 3.

So we get the assertion.

Example 5.1 Here we note that there exists an example of polarized 3-fold (X,L) with (∗) in
Theorem 5.1.

Let X̃ be a quintic hypersurface in P4 and let L̃ = O
eX(1). Let G := {1, ξ, ξ2, ξ3, ξ4} be a cyclic

subgroup of order 5 of the multiplicative group of C, where ξ is a primitive 5th root of unity. Then
we define an action of G on P4 by

g · (x0 : x1 : x2 : x3 : x4) := (x0 : gx1 : g2x2 : g3x3 : g4x4)

for any g ∈ G. Then G acts freely on X̃, and X := X̃/G is a smooth projective 3-fold with
O(KX) = OX and hj(OX) = 0 for j = 1 and 2. Let D ∈ |L̃|. Then L := π(D) is an ample divisor
on X with L3 = 1 and h0(L) = 1, where π : X̃ → X be the quotient map. Hence g2(X,L) =
h0(KX +L)−h3(OX)+h2(OX) = h0(L)−h0(OX)+h2(OX) = 0 and g1(X,L) = 1+(1/2)(KX +
2L)L2 = 1 + L3 = 2. Therefore h0(KX + 2L) = h0(KX + L) + g2(X,L)− h1(OX) + g1(X,L) = 3.
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