Correction to "On the sectional geometric genus of quasi-polarized varieties, II", Manuscripta Math. 113, (2004) 211–237.

Yoshiaki Fukuma

March 17, 2008

In [2, page 44], Harris defined a Castelnuovo variety as follows:

Definition 1 Let X be a projective variety of dimension $n \ge 1$ such that X is a nondegenerate subvariety of \mathbb{P}^N . Then X is called a *Castelnuovo variety* if the following conditions are satisfied:

(1) $d \ge n(N-n) + 2.$

(2)
$$h^n(\mathcal{O}_X) = \binom{M}{n+1}(N-n) + \binom{M}{n}\varepsilon.$$

Here $d = \deg X$, $M := \left[\frac{d-1}{N-n}\right]$ and $\varepsilon := d - 1 - M(N - n)$.

Let (X, L) be a polarized manifold such that L is very ample. Then, adopting Definition 1, in the paper [1] we say that (X, L) is a Castelnuovo variety if X is a Castelnuovo variety by the embedding defined by |L|.

For a nondegenerate subvariety X of \mathbb{P}^N , in [2, Section 5, P.67], in order to prove that the following

(*) If X is smooth and a hyperplane section X_1 of X is a Castelnuovo variety, then so is X,

Harris proved that X satisfies (2) in Definition 1, but it seems to me that he did not check that X satisfies (1) in Definition 1.

In [1, Theorem 4.7], we use (*). From assumptions in [1, Theorem 4.7] we cannot see that X_{n-j} satisfies (1) in Definition 1, that is, deg $X_{n-j} \ge j(N-(n-j)-j)+2 =$ j(N-n)+2 for every j with $i+1 \le j \le n$. Hence we don't know (X_{n-j}, L_{n-j}) is a Castelnuovo variety in the above sense, and [1, Theorem 4.7] is incorrect.

So here we would like to modify [1, Theorem 4.7]. Concretely, in [1, Theorem 4.7], we change the statement "Assume that $g_i(X, L) \ge 1$ " into "Assume that $d \ge n(N-n) + 2$. Namely, Theorem 4.7 is restated as follows:

Theorem 4.7 Let X be a smooth projective variety of dimension $n \ge 2$ and let L be a very ample line bundle on X. Let $\phi : X \hookrightarrow \mathbb{P}^N$ be the embedding defined by the complete linear system |L|. (Here $N = h^0(L) - 1$.) We put $d = L^n$, $M = \left[\frac{d-1}{N-n}\right]$ and $\varepsilon = d - 1 - M(N - n)$. Let i be an integer with $1 \le i \le n$. Assume that $d \ge n(N - n) + 2$ and

$$g_i(X,L) = \binom{M}{i+1}(N-n) + \binom{M}{i}\varepsilon.$$

Then (X, L) is a Castelnuovo variety.

Proof. We use [1, Notation 1.7.1]. First we note that $\phi|_{X_j} : X_j \hookrightarrow \mathbb{P}^{N-j}$ is nondegenerate for every integer j with $0 \leq j \leq n-i$. We prove that X_{n-i-k} is a Castelnuovo variety with respect to $\phi|_{X_{n-i-k}} : X_{n-i-k} \hookrightarrow \mathbb{P}^{N-(n-i-k)}$ for every integer k with $0 \leq k \leq n-i$. From the assumption that $d \geq n(N-n) + 2$, we see that

$$L_{n-i-k}^{i+k} \ge (i+k)(N-n) + 2 = (i+k)(N-(n-i-k)-(i+k)) + 2$$
(1)

for every integer k with $0 \le k \le n - i$. We prove this by induction on k.

Assume that k = 0. By assumption

$$h^{i}(\mathcal{O}_{X_{n-i}}) = g_{i}(X, L)$$

= $\binom{M}{i+1}(N-n) + \binom{M}{i}\varepsilon$
= $\binom{M_{i}}{i+1}\{(N-n+i)-i\} + \binom{M_{i}}{i}\varepsilon_{i}$

where $M_i := \left[\frac{d-1}{(N-n+i)-i}\right] = \left[\frac{d-1}{N-n}\right] = M$ and $\varepsilon_i := d-1 - M_i((N-n+i)-i) = d-1 - M(N-n) = \varepsilon$. Hence by (1) we see that X_{n-i} is a Castelnuovo variety.

Assume that the assertion holds for k = t, where t is an integer with $0 \le t \le n - i - 1$. Namely we assume that X_{n-i-t} is a Castelnuovo variety with respect to $\phi|_{X_{n-i-t}} : X_{n-i-t} \hookrightarrow \mathbb{P}^{N-(n-i-t)}$. Then by a result of Harris (see [2, Section 5, page 67]), if X_{n-i-t} is a Castelnuovo variety, then so is $X_{n-i-t-1}$ by (1). Hence by induction we get the assertion. \Box

References

- [1] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, II, Manuscripta Math. 113 (2004), 211–237.
- [2] J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 8 (1981), 35–68.

Yoshiaki Fukuma Department of Mathematics Faculty of Science Kochi University Akebono-cho, Kochi 780-8520 Japan E-mail: fukuma@math.kochi-u.ac.jp