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1 Introduction

In this note, we will calculate the ith sectional Euler number ei(X,L) and the ith sectional Betti
number bi(X,L) of some special polarized manifolds (X,L). We also note that results in this
note are useful for classifications of polarized manifolds (for example see [5]). At any time, we will
update this note if we complete calculations of sectional Euler numbers and sectiona Betti numbers
of new example1.

2 Preliminaties

Notation 2.1 Let (X,L) be a polarized manifold of dimension n. For every integers i and j with
0 ≤ i ≤ n and 0 ≤ j ≤ i, we put

Ci
j(X,L) :=

j∑
l=0

(−1)l

(
n − i + l − 1

l

)
cj−l(X)Ll,

Definition 2.1 ([3]) Let (X,L) be a polarized manifold of dimension n, and let i and j be integers
with 0 ≤ j ≤ i ≤ n.

(i) The i-th sectional Euler number ei(X,L) of (X,L) is defined by the following:

ei(X,L) := Ci
i (X,L)Ln−i.

(ii) The i-th sectional Betti number bi(X,L) of (X,L) is defined by the following:

bi(X,L) :=


e0(X,L) if i = 0,

(−1)i

ei(X,L) −
i−1∑
j=0

2(−1)jhj(X, C)

 if 1 ≤ i ≤ n.

Remark 2.1 (i) For every integers i and j with 0 ≤ j ≤ i ≤ n, ei(X,L), bi(X,L) and wj
i (X,L)

are integer (see [3]).

(ii) If i = 0, then e0(X,L) = b0(X,L) = Ln. If i = n, then en(X,L) = e(X) and bn(X,L) =
hn(X, C).

1If you find a mistake in this note, please let me know.
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3 Calculations

Example 3.1 The case where (X,L) is (Pn,OPn(1)).
Then

ei(Pn,OPn(1)) = e(Pi) = i + 1

and

bi(Pn,OPn(1)) = b(Pi) =
{

1, if i is even,
0, if i is odd.

Example 3.2 The case where (X,L) is (Qn,OQn(1)).
Then

bn(Qn) =
{

2, if n is even,
0, if n is odd,

bn−1(Qn) =
{

0, if n is even,
1, if n is odd,

bi(Qn) =
{

1, if i is even with i ≤ n − 2,
0, if i is odd with i ≤ n − 2,

Hence

ei(Qn,OQn(1)) = ei(Qi) =
{

i + 2, if i is even,
i + 1, if i is odd,

and

bi(Qn,OQn(1)) = (−1)i

ei(Qn,OQn(1)) − 2
i−1∑
j=0

bj(Qn)

 =
{

2, if i is even,
0, if i is odd.

Example 3.3 The case where (X,L) is (P4,OP4(2)).
Set H = OP4(1). Then c1(P4) = 5H, c2(P4) = 10H2, c3(P4) = 10H3, c4(P4) = 5H4 = 5.

Hence

e0(P4,OP4(2)) = (2H)4 = 16,

e1(P4,OP4(2)) =
1∑

l=0

(−1)l

(
2 + l

l

)
c1−l(X)(2H)3+l = −8,

e2(P4,OP4(2)) =
2∑

l=0

(−1)l

(
1 + l

l

)
c2−l(X)(2H)2+l = 8,

e3(P4,OP4(2)) =
3∑

l=0

(−1)l

(
l

l

)
c3−l(X)(2H)1+l = 4,

e4(P4) = e(P4) = 5.

On the other hand, since

bi(P4) =
{

1, if i is even,
0, if i is odd,

we have

b0(P4,OP4(2)) = 16,

b1(P4,OP4(2)) = 10,

b2(P4,OP4(2)) = 6,
b3(P4,OP4(2)) = 0,
b4(P4,OP4(2)) = 1.
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Example 3.4 The case where (X,L) is (Q3,OQ3(2)).
Set H = OQ3(1). Then c1(Q3) = 3H, c2(Q3) = 10H2, c3(Q3) = 2H3 = 4.

Hence

e0(Q3,OQ3(2)) = (2H)3 = 16,

e1(Q3,OQ3(2)) =
1∑

l=0

(−1)l

(
1 + l

l

)
c1−l(X)(2H)2+l = −8,

e2(Q3,OQ3(2)) =
2∑

l=0

(−1)l

(
l

l

)
c2−l(X)(2H)1+l = 8,

e3(Q3,OQ3(2)) = e(Q3) = 4.

On the other hand, since

bi(Q3) =
{

1, if i is even,
0, if i is odd,

we have

b0(Q3,OQ3(2)) = 16,

b1(Q3,OQ3(2)) = 10,

b2(Q3,OQ3(2)) = 6,
b3(Q3,OQ3(2)) = 0.

Example 3.5 The case where (X,L) is (P3,OP3(3)).
Set H = OP3(1). Then c1(P3) = 4H, c2(P3) = 6H2, c3(P3) = 4H3.

Hence

e0(P3,OP3(3)) = (3H)3 = 27,

e1(P3,OP3(3)) =
1∑

l=0

(−1)l

(
1 + l

l

)
c1−l(X)(3H)2+l = −18,

e2(P3,OP3(3)) =
2∑

l=0

(−1)lc2−l(X)(3H)1+l = 9,

e3(P3,OP3(3)) = e(P3) = 4.

On the other hand, since

bi(P3) =
{

1, if i is even,
0, if i is odd,

we have

b0(P3,OP3(3)) = 16,

b1(P3,OP3(3)) = 10,

b2(P3,OP3(3)) = 6,
b3(P3,OP3(3)) = 0.

Example 3.6 The case where (X,L) is a Veronese fibration over a smooth curve C (see [2,
(13.10)]).
Then there exists a vector bundle E of rank three on C such that X = PC(E) and L = 2H(E) +
f∗(B), where f : X → C is its fibration and B ∈ Pic(C). Set e := deg E and b := deg B. First we
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calculate ei(X,L). Here we note that 2g(C)−2+e+2b = 0, L3 = 8e+12b and g1(X,L) = 1+2e+2b.
Then

e0(X,L) = L3 = 8e + 12b, e1(X,L) = 2 − 2g1(X,L) = −4e − 4b.

Next we calculate e2(X,L). Since

c2(X) =
2∑

j=0

j∑
k=0

(
3 − k

j − k

)
ck(f∗(E∨))H(E)j−kcj−k(f∗(TC))

= 3c1(f∗(TC))H(E) + 3H(E)2 + 2c1(f∗(E∨))H(E),

we have

e2(X,L) =
2∑

l=0

(−1)l

(
2 + l

l

)
c2−l(X)(2H + f∗(B))1+l

= 20e + 27b.

Next we calculate e3(X,L). We note that e3(X,L) = e(X). Since

b0(X) = 1,

b1(X) = 2g(C),
b2(X) = 2,

b3(X) = 2g(C),

we have e3(X,L) = e(X) = 6 − 6g(C) = 3e + 6b.
Furthermore we calculate bi(X,L). Then

b0(X,L) = 8e + 12e,

b1(X,L) = 2(1 + 2e + 2b),
b2(X,L) = 19e + 25b,
b3(X,L) = 2 − e − 2b.

Example 3.7 The case where (X,L) is a Del Pezzo manifold.
Here we note that by [2, (8.11) Theorem], we have Ln ≤ 8 and (X,L) is one of the following:

(3.7.1) (X,L) ∼= (P3,OP3(2)).
First we calculate ei(X,L). Since

ei(X,L) =
i∑

l=0

(−1)l

(
n − i + l − 1

l

)
ci−l(X)Ln−i+l

=
i∑

l=0

(−1)l

(
n − i + l − 1

l

)(
n + 1
i − l

)
2n−i+l,

we have

e0(X,L) =
(

(−1)0
(

2
0

)(
4
0

)
20

)
23 = 8,

e1(X,L) =
(

(−1)0
(

1
0

)(
4
1

)
20 + (−1)1

(
2
1

)(
4
0

)
21

)
22 = 0,

e2(X,L) =
(

(−1)0
(

0
0

)(
4
2

)
20 + (−1)1

(
1
1

)(
4
1

)
21 + (−1)2

(
2
2

)(
4
0

)
22

)
2 = 4,

e3(X,L) =
(

(−1)0
(
−1
0

)(
4
3

)
20 + (−1)1

(
0
1

)(
4
2

)
21 + (−1)2

(
1
2

)(
4
1

)
22 + (−1)3

(
2
3

)(
4
0

)
23

)
20 = 4.
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Next we calculate bi(X,L). Since

bj(X, C) =
{

1, if j = 0, 2,
0, if j = 1, 3,

we have

b0(X,L) = e0(X,L) = 8,
b1(X,L) = −e1(X,L) + 2b0(X) = 2,

b2(X,L) = e2(X,L) − 2(b0(X) − b1(X)) = 2,

b3(X,L) = −e3(X,L) + 2(b0(X) − b1(X) + b2(X)) = 0.

(3.7.2) X is the blowing up of P3 at a point and L = π∗(OP3(2)) − E, where π : X → P3 is its
birational morphism and E is the exceptional divisor. Then by [3, Theorem 3.2] and (3.7.1)
above, we have

e0(X,L) = 7,

e1(X,L) = 0,

e2(X,L) = 5,

e3(X,L) = 6.

and

b0(X,L) = 7,

b1(X,L) = 2,

b2(X,L) = 3,

b3(X,L) = 0.

(3.7.3) (X,L) is either

(P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)), (P2 × P2,⊗2

i=1p
∗
iOP2(1)) or (PP2(TP2),H(TP2))

where pi is the ith projection and TP2 is the tangent bundle of P2.

(3.7.3.1) The case where (X,L) ∼= (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)).

Since TX
∼= ⊕3

j=1p
∗
j (TP1), we have

c1(TX) =
3∑

j=1

p∗jc1(TP1)

=
3∑

j=1

p∗jc1(OP1(2)),

c2(TX) = p∗1c1(TP1)p∗2c1(TP1) + p∗1c1(TP1)p∗3c1(TP1) + p∗2c1(TP1)p∗3c1(TP1)
= p∗1c1(OP1(2))p∗2c1(OP1(2)) + p∗1c1(OP1(2))p∗3c1(OP1(2)) + p∗2c1(OP1(2))p∗3c1(OP1(2))

c3(X) = e(X).

On the other hand

b0(X) = 1,

b1(X) = 0,

b2(X) = 3,

b3(X) = 0.
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Therefore

e0(X,L) = L3 = 6,

e1(X,L) =
1∑

l=0

(−1)l

(
1 + l

l

)
c1−l(X)L2+l = 0,

e2(X,L) =
2∑

l=0

(−1)l

(
l

l

)
c2−l(X)L1+l = 6,

e3(X,L) = e(X) = 8,

and

b0(X,L) = e0(X,L) = 6,

b1(X,L) = −e1(X,L) + 2b0(X) = 2,

b2(X,L) = e2(X,L) − 2(b0(X) − b1(X)) = 4,

b3(X,L) = −e3(X,L) + 2(b0(X) − b1(X) + b2(X)) = 0.

(3.7.3.2) The case where (X,L) ∼= (P2 × P2,⊗2
i=1p

∗
iOP2(1)).

Since TX
∼= ⊕2

j=1p
∗
j (TP2), we have

c1(TX) =
2∑

j=1

p∗jc1(TP2)

=
2∑

j=1

p∗jc1(OP2(3)),

c2(TX) = p∗1c2(TP2) + p∗1c1(TP2)p∗2c1(TP2) + p∗2c2(TP2)
= 3p∗1OP2(1)2 + 9p∗1OP2(1)p∗2OP2(1) + 3p∗2OP2(1)2,

c3(TX) = p∗1c2(TP2)p∗2c1(TP2) + p∗1c1(TP2)p∗2c2(TP2)
= 9p∗1OP2(1)2p∗2OP2(1) + 9p∗1OP2(1)p∗2OP2(1)2,

c4(X) = e(X).

On the other hand

b0(X) = 1,

b1(X) = 2q(X) = 0,

b2(X) = 2b2(P2)b0(P2) + b1(P2)b1(P2) = 2,

b3(X) = 2b3(P2)b0(P2) + 2b2(P2)b1(P2) = 0,
b4(X) = 2b4(P2)b0(P2) + 2b3(P2)b1(P2) + b2(P2)b2(P2) = 3.

Therefore

e0(X,L) = L4 = 6,

e1(X,L) =
1∑

l=0

(−1)l

(
2 + l

l

)
c1−l(X)L3+l = 0,

e2(X,L) =
2∑

l=0

(−1)l

(
1 + l

l

)
c2−l(X)L2+l = 6,

e3(X,L) =
3∑

l=0

(−1)l

(
l

l

)
c3−l(X)L1+l = 6,

e4(X,L) = e(X) = 9,
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and

b0(X,L) = e0(X,L) = 6,

b1(X,L) = −e1(X,L) + 2b0(X) = 2,

b2(X,L) = e2(X,L) − 2(b0(X) − b1(X)) = 4,

b3(X,L) = −e3(X,L) + 2(b0(X) − b1(X) + b2(X)) = 0,

b4(X,L) = e4(X,L) − 2(b0(X) − b1(X) + b2(X) − b3(X)) = 3.

(3.7.3.3) The case where (X,L) ∼= (PP2(TP2),H(TP2)).
First we note that

b0(X) = 1,

b1(X) = 0,

b2(X) = 2,

b3(X) = 0.

Then by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)] we have

e0(X,L) = s2(TP2) = K2
P2 − c2(P2) = 6,

e1(X,L) = −(c1(TP2) + KP2)c1(TP2) = 0,

e2(X,L) = c2(P2) + c2(TP2) = 6,

e3(X,L) = 2e(P2) = 6,

and

b0(X,L) = e0(X,L) = 6,

b1(X,L) = (c1(TP2) + KP2)c1(TP2) + 2 = 2,

b2(X,L) = b2(X) + c2(P2) − 1 = 4,

b3(X,L) = b3(X) = 0.

(3.7.4) The case where (X,L) is a linear section of the Grassmann variety Gr(5, 2) parametrizing
lines in P4, embedded in P9 via the Plücker embedding. Then Ln = 5.

First we review the Chern class of Gr(p, q) parametrizing Pq−1 in Pp−1. Let S (resp. Q) be
the universal subbundle (resp. the universal quotient bundle) of Gr(p, q). Then

c(Gr(p, q)) = c(S∨ ⊗ Q). (1)

We note that rankS = q and rankQ = p − q. From (1),

ch(TGr(p,q)) = ch(S∨)ch(Q) (2)

holds. Since ch(Q) + ch(S) = p, we have

ch(S) = q −
∑
k≥1

chk(Q).

On the other hand
chk(S∨) = q −

∑
k≥1

(−1)kchk(Q). (3)

Next we explain the Schubert caliculas. For λ = (λ0, . . . , λd) with p− q ≥ λ0 ≥ . . . ≥ λd ≥ 0,
we set

{λ0, . . . , λd} = det(cλi+j−1(Q))0≤i,j≤p.
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Then cm(Q) = {m, 0, . . . , 0}. We note that the following equality holds.

{λ} · cm(Q) =
∑

{µ}, (4)

where the sum over µ with p − q ≥ µ0 ≥ λ0 ≥ · · · ≥ µp ≥ λp and
∑p

i=0 λi = m +
∑p

i=0 µi.
Moreover we have ∫

c1(Q)s{λ0, . . . , λd} =
k!

a0! · · · ad!

∏
i<j

(aj − ai). (5)

Here ai = p − q + i − λi, k =
∑p

i=0 ai − p(p+1)
2 and s = dimGr(p, q) −

∑d
i=0(λi − i) =

q(p − q) −
∑d

i=0(λi − i).
Here we consider thde case where p = 5 and q = 2. Then first we calculate cj(Gr(5, 2)) for
1 ≤ j ≤ 5. From (2) and (3), we have

ch(Gr(5, 2)) = ch(S∨)ch(Q)

=

2 −
∑
k≥1

(−1)kchk(Q)

3 +
∑
k≥1

chk(Q)

 .

Using this, we get the following. (Here we note that cj(Q) = 0 for j ≥ 4 because rankQ = 3.)

c1(Gr(5, 2)) = 5c1(Q)
c2(Gr(5, 2)) = 12c1(Q)2 − c2(Q)
c3(Gr(5, 2)) = 20c1(Q)3 − 10c1(Q)c2(Q) + 5c3(Q)
c4(Gr(5, 2)) = 28c1(Q)4 − 38c1(Q)2c2(Q) + 20c1(Q)c3(Q) + 7c2(Q)2

c5(Gr(5, 2)) = 36c1(Q)5 − 90c1(Q)3c2(Q) + 40c1(Q)2c3(Q) + 45c1(Q)c2(Q)2 − 10c2(Q)c3(Q).

Next we use the Scubert caliculas. First from (5) we get the following.

c1(Q)6 = 5,
c1(Q)4c2(Q) = 3,

c1(Q)3c3(Q) = 1.

Next we calculate c2(Q)2c1(Q)2. Since {2, 0} · {2, 0} = {3, 1} + {2, 2}, we have

c2(Q)2c1(Q)2 =
∫

c1(Q)3{3, 1} +
∫

c1(Q)3{2, 2}

= 2.

Next we calculate c2(Q)c3(Q)c1(Q). Since {2, 0} · {3, 0} = {3, 2}, we have

c2(Q)c3(Q)c1(Q) =
∫

c1(Q)2{3, 2}

= 1.

Hence

c1(Gr(5, 2))L5 = 5c1(Q)6 = 25
c2(Gr(5, 2))L4 = 12c1(Q)6 − c1(Q)64c2(Q) = 57
c3(Gr(5, 2))L3 = 20c1(Q)36 − 10c1(Q)4c2(Q) + 5c1(Q)3c3(Q) = 75
c4(Gr(5, 2))L2 = 28c1(Q)6 − 38c1(Q)4c2(Q) + 20c1(Q)3c3(Q) + 7c1(Q)2c2(Q)2 = 60
c5(Gr(5, 2))L = 36c1(Q)6 − 90c1(Q)4c2(Q) + 40c1(Q)3c3(Q)

+45c1(Q)2c2(Q)2 − 10c1(Q)c2(Q)c3(Q)
= 30.
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Therefore

e0(X,L) = L6 = 5,

e1(X,L) = c1(X)L5 − 5L6 = 0,

e2(X,L) = c2(X)L4 − 4c1(X)L5 + 10L6 = 7,

e3(X,L) = c3(X)L3 − 3c2(X)L4 + 6c1(X)L5 − 10L6 = 4,

e4(X,L) = c4(X)L2 − 2c3(X)L3 + 3c2(X)L4 − 4c1(X)L5 + 5L6 = 6,

e5(X,L) = c5(X)L − c4(X)L2 + c3(X)L3 − c2(X)L4 + c1(X)L5 − L6 = 8,

e6(X,L) = e(X) = 10.

Next we calculate bi(X,L). Since b0(X) = b2(X) = 1, b4(X) = b6(X) = b8(X) = 2
b10(X) = b12(X) = 1 and bj(X) = 0 for every positive odd integer j, we have

b0(X,L) = 5,

b1(X,L) = 2,

b2(X,L) = 5,

b3(X,L) = 0,

b4(X,L) = 2,

b5(X,L) = 4,

b6(X,L) = 2.

(3.7.5) The case where (X,L) is a complete intersection of two hyperquadrics in Pn+2. Then Ln = 4.
First we calculate e(X) in this case. In general we can prove the following.

Lemma 3.1 Let (X,L) be a complete intersection of two hypersurfaces of degree s and t in
Pn+2. Then

e(X) = − s

t2
(1 − t)n+3

n−1∑
k=0

(s

t

)k

+
s

t2

n−1∑
j=0

(s

t

)j
2+j∑
k=0

(−t)k

(
n + 3

n + 3 − k

)
+ (−s)n+1(−t).

Proof. Let cj := cj(X) and H := OX(1). Then the following holds (see [7, Example 3.2.12]).

(1 + H)n+3 = C(X)(1 + sH)(1 + tH).

Here C(X) = (1 + c1 + · · · + cn). Hence

(cn + scn−1H) + t(cn−1H + scn−2H
2) =

(
n + 3

n

)
Hn

(cn−1 + scn−2H) + t(cn−2H + scn−3H
2) =

(
n + 3
n − 1

)
Hn−1

...

(c2 + sc1H) + t(c1H + sc0H
2) =

(
n + 3

2

)
H2

Hence

cn + scn−1H + (−t)n−2 · t(c1H
n−1 + sc0H

n)

=
((

n + 3
n

)
+ (−t)

(
n + 3
n − 1

)
+ · · · + (−t)n−3

(
n + 3

3

)
+ (−t)n−2

(
n + 3

2

))
Hn
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Moreover since c1H
n−1 = O(n− s− t + 3)Hn−1, we have c1H

n−1 + sc0H
n = (n− t + 3)Hn.

Therefore

cn + scn−1H

=
((

n + 3
n

)
+ (−t)

(
n + 3
n − 1

)
+ · · ·

· · · + (−t)n−3

(
n + 3

3

)
+ (−t)n−2

(
n + 3

2

)
+ (−t)n−1

(
n + 3

1

)
+ (−t)n

)
Hn

= − s

t2

(
(−t)3

(
n + 3

n

)
+ (−t)4

(
n + 3
n − 1

)
+ · · ·

· · · + (−t)n

(
n + 3

3

)
+ (−t)n+1

(
n + 3

2

)
+ (−t)n+2

(
n + 3

1

)
+ (−t)n+3

)
= − s

t2

(
(1 − t)n+3 − 1 − (−t)1

(
n + 3
n + 2

)
− (−t)2

(
n + 3
n + 1

))
= − s

t2

(
(1 − t)n+3 − 1 + t

(
n + 3
n + 2

)
− t2

(
n + 3
n + 1

))
.

By the same argument as above for every j with 1 ≤ j ≤ n − 1 we have

cjH
n−j + scj−1H

n−j+1

=
s

(−t)n−j+2

(
(1 − t)n+3 −

n+2−j∑
k=0

(−t)k

(
n + 3

n + 3 − k

))
.

Hence

cn = − s

t2
(1 − t)n+3

n−1∑
k=0

(s

t

)k

+
s

t2

n−1∑
j=0

(s

t

)j
2+j∑
k=0

(−t)k

(
n + 3

n + 3 − k

)
+ (−s)n+1(−t). (6)

Lemma 3.2 Let (X,L) be a complete intersection of two hyperquadrics in Pn+2. Then

e(X) =
{

2n + 4, if n is even,
0, if n is odd.

Proof. By Lemma 3.1 we have

cn = (−2)n+2 +
1
2

n(−1)n +
n∑

j=1

n+2−j∑
k=0

(−2)k

(
n + 3

n + 3 − k

) .

Next we prove the following.

Claim 3.1

(−2)n+2 +
1
2

n(−1)n +
n∑

j=1

n+2−j∑
k=0

(−2)k

(
n + 3

n + 3 − k

) (7)

=
{

0, n is odd,
2n + 4, n is even.

10



Proof. First we note the following.

n∑
j=1

n+2−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
(8)

=
n∑

j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+

n∑
j=1

(−2)n+2−j

(
n + 2

j

)

=
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+

1∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+

n∑
j=1

(−2)n+2−j

(
n + 2

j

)
,

n∑
j=1

n+2−j∑
k=0

(−2)k

(
n + 2

n + 3 − k

)
=

n∑
j=1

n+2−j∑
k=1

(−2)k

(
n + 2

n + 3 − k

)
(9)

=
n∑

j=1

n+1−j∑
k=0

(−2)k+1

(
n + 2

n + 2 − k

)

=
n−1∑
j=1

n+1−j∑
k=0

(−2)k+1

(
n + 2

n + 2 − k

)

+
1∑

k=0

(−2)k+1

(
n + 2

n + 2 − k

)

= −2
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)

+
1∑

k=0

(−2)k+1

(
n + 2

n + 2 − k

)
.

Then from (8) and (9) we have

n∑
j=1

n+2−j∑
k=0

(−2)k

((
n + 2

n + 2 − k

)
+

(
n + 2

n + 2 − k

))

= −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
−

1∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+

n∑
j=1

(−2)n+2−j

(
n + 2

j

)

= −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+ 4n + 6 + (−1)n+2 − (−2)n+2. (10)

Here we prove (7) by induction on n.

If n = 1 and 2, then (7) holds.

Next we assume that (7) holds for n − 1 is odd. Then by assumption we have the following
equality.

(−2)n+1 +
1
2

(n − 1)(−1)n−1 +
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

) = 0. (11)

11



Then by using (11), we have

(−2)n+2 +
1
2

n(−1)n +
n∑

j=1

n+2−j∑
k=0

(−2)k

(
n + 3

n + 3 − k

)
= (−2)n+2 +

1
2

n(−1)n −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+ 4n + 6

+(−1)n+2 − (−2)n+2
)

= (−2)n+2 +
1
2

n −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+ 4n + 6 + (−1)n+2 − (−2)n+2


= (−2)n+2 +

1
2

n −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+ 4n + 6 + 1 − (−2)n+2


= (−2)n+2 +

1
2

(
5n + 7 + 2(−2)n+1(n − 1)(−1)n−1

)
= 2n + 4.

Next we assume that (7) holds for n − 1 is even. Then by assumption we have the following
equality.

(−2)n+1 +
1
2

(n − 1)(−1)n−1 +
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

) = 2n + 2. (12)

Then by using (12), we have

(−2)n+2 +
1
2

n(−1)n +
n∑

j=1

n+2−j∑
k=0

(−2)k

(
n + 3

n + 3 − k

)
= (−2)n+2 +

1
2

−n −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
+ 4n + 6 + (−1)n+2 − (−2)n+2


= (−2)n+2 +

1
2

3n + 5 −
n−1∑
j=1

n+1−j∑
k=0

(−2)k

(
n + 2

n + 2 − k

)
− (−2)n+2


= (−2)n+2 +

1
2

(
3n + 5 + 2(−2)n+1 + (n − 1)(−1)n−1 − 2(2n + 2) − (−2)n+2

)
= 0.

This completes the proof of Claim 3.1.

From Claim 3.1 we get Lemma 3.2.

Remark 3.1 Let (X,L) be a complete intersection of two hypersurfaces of degree s and t
in Pn+2. Then from (6) we can write e(X) as follows.

e(X) = (−1)nst

 n∑
k=0

(−1)k

(
n + 3

k

) n−k∑
j=0

sn−k−jtj

 .
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Proof.

cn = − s

t2
(1 − t)n+3

(
1 +

s

t
+ · · · +

(s

t

)n−1
)

+
s

t2

{(
1 + (−t)

(
n + 3
n + 2

)
+ (−t)2

(
n + 3
n + 1

))
+

s

t

(
1 + (−t)

(
n + 3
n + 2

)
+ (−t)2

(
n + 3
n + 1

)
+ (−t)3

(
n + 3

n

))
+ · · · +

(s

t

)n−1
(

1 + (−t)
(

n + 3
n + 2

)
+ · · · + (−t)n+1

(
n + 3

2

))}
+ (−s)n+1(−t)

= − s

t2

(
(−t)3

(
n + 3

n

)
+ · · · + (−t)n+3

)(
1 +

s

t
+ · · · +

(s

t

)n−1
)

+
s

t2

n−1∑
j=1

(s

t

)j
j∑

k=P1

(−t)2+k

(
n + 3

n + 1 − k

) + (−s)n+1(−t)

= − s

t2

(
(−t)3

(
n + 3

n

)
+ · · · + (−t)n+3

)
− s2

t3

(
(−t)4

(
n + 3
n − 1

)
+ · · · + (−t)n+3

)
−s3

t4

(
(−t)5

(
n + 3
n − 2

)
+ · · · + (−t)n+3

)
· · · − sn

tn+1

(
(−t)n+2

(
n + 3

1

)
+ (−t)n+3

)
+(−s)n+1(−t)

= (−s)
(

(−t)
(

n + 3
n

)
+ · · · + (−t)n+1

)
+ s2

(
(−t)

(
n + 3
n − 1

)
+ · · · + (−t)n

)
−s3

(
(−t)

(
n + 3
n − 2

)
+ · · · + (−t)n−1

)
· · · + (−s)n

(
(−t)

(
n + 3

1

)
+ (−t)2

)
+ (−s)n+1(−t)

=
n+1∑
j=1

(−s)(−t)j

(
n + 3

n + 1 − j

)
+

n∑
j=1

(−s)2(−t)j

(
n + 3
n − j

)
+

n−1∑
j=1

(−s)3(−t)j

(
n + 3

n − 1 − j

)

+ · · · +
2∑

j=1

(−s)n(−t)j

(
n + 3
2 − j

)
+

1∑
j=1

(−s)n+1(−t)j

(
n + 3
1 − j

)

= st

n+1∑
j=1

(−t)j−1

(
n + 3

n + 1 − j

)
+

n∑
j=1

(−s)(−t)j−1

(
n + 3
n − j

)
+ · · · +

1∑
j=1

(−s)n(−t)j−1

(
n + 3
1 − j

)
= st

 n∑
j=0

(−t)j

(
n + 3
n − j

)
+

n−1∑
j=0

(−s)(−t)j

(
n + 3

n − 1 − j

)
+ · · · +

0∑
j=0

(−s)n(−t)j

(
n + 3
−j

)
= st

 n∑
k=0

(−1)n−k

(
n + 3

k

) n−k∑
j=0

sn−k−jtj


= (−1)nst

 n∑
k=0

(−1)k

(
n + 3

k

) n−k∑
j=0

sn−k−jtj

 .

So we get the assertion.

Here we go back to the case (3.7.5). In this case, there exists a smooth ladder X ⊃ X1 ⊃
· · · ⊃ Xn−1 of L such that (Xj , Lj) is complete intersection of two hyperquadrics in Pn−j+2.
Since ei(X,L) = e(Xn−i), we see that

ei(X,L) =
{

2i + 4, if i is even with i ≥ 2,
0, if i is odd with i ≥ 3.
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We also note that

ei(X,L) =
{

4, if i = 0,
0, if i = 1.

Next we calculate bi(X,L). Since

bi(X) =
{

1, if i is even with i ≤ n − 1,
0, if i is odd with i ≤ n − 1,

we have

bi(X,L) =

{
2i + 4 − 2 i̇

2 = i + 4, if i is even with i ≥ 2,
0 + 2 ˙i+1

2 = i + 1, if i is odd with i ≥ 3.

We also note that

bi(X,L) =
{

4, if i = 0,
2, if i = 1.

(3.7.6) The case where X is a hypercubic in Pn+1 and L = OX(1).

Here we consider more general case than this. In general we can prove the following claim.

Lemma 3.3 Let (X,L) be a polarized manifold of dimension n such that X is a hypersurface
of degree m and L = OX(1). Then

ei(X,L) =
1
m

(
(1 − m)i+2 − 1 + m(i + 2)

)
,

bi(X,L) =
{

1
m ((1 − m)i+2 − 1 + m(i + 2)) − i, if i is even with i ≤ n − 1,
− 1

m ((1 − m)i+2 − 1 + m(i + 2)) + i + 1, if i is odd with i ≤ n − 1.

Proof. First we calculate en(X,L). Let cj := cj(X) and H := OX(1). Then the following
holds (see [7, Example 3.2.12]).

(1 + H)n+2 = (1 + c1 + · · · + cn)(1 + mH).

Hence

cn + mcn−1H =
(

n + 2
n

)
Hn

cn−1 + mcn−2H =
(

n + 2
n − 1

)
Hn−1

...

c1 + mH =
(

n + 2
1

)
H

So we have

cn = (−m)nHn +
1

m2

(
(−m)2

(
n + 2

2

)
+ (−m)3

(
n + 2

3

)
+ · · · + (−m)n+1

(
n + 2
n + 1

))
Hn

= m(−m)n +
1

m2

(
(1 − m)n+2 − 1 − (−m)

(
n + 2

1

)
− (−m)n+2

)
m

=
1
m

(
(1 − m)n+2 − 1 + m(n + 2)

)
.
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On the other hand, in this case, there exists a smooth ladder X ⊃ X1 ⊃ · · · ⊃ Xn−1 of L
such that (Xj , Lj) is a hypersurface of degree m in Pn−j+1. Since ei(X,L) = e(Xn−i), by
the above argument we see that

ei(X,L) =
1
m

(
(1 − m)i+2 − 1 + m(i + 2)

)
.

Next we calculate bi(X,L). Since

bi(X) =
{

1, if i is even with i ≤ n − 1,
0, if i is odd with i ≤ n − 1,

we have

bi(X,L) =
{

1
m

(
(1 − m)i+2 − 1 + m(i + 2)

)
− 2 · i

2 , if i is even with i ≤ n − 1,
− 1

m

(
(1 − m)i+2 − 1 + m(i + 2)

)
+ 2 · i+1

2 , if i is odd with i ≤ n − 1.

=
{

1
m ((1 − m)i+2 − 1 + m(i + 2)) − i, if i is even with i ≤ n − 1,
− 1

m ((1 − m)i+2 − 1 + m(i + 2)) + i + 1, if i is odd with i ≤ n − 1.

This completes the proof of Lemma 3.3.

(3.7.7) The case where X is a double covering of Pn branched along a smooth hypersurface of degree
4, and L is the pull-back of OPn(1). Here we consider more general case than this.

Lemma 3.4 Let X be a double covering of Pn branched along a smooth hypersurface of
degree m with even m ≥ 4, and L is the pull-back of OPn(1). Then

ei(X,L) = i + 2 − 1
m

(m − 1 + (1 − m)i+1),

bi(X,L) =
(

i + 2 − 1
m

(m − 1 + (1 − m)i+1)
)

+ (−1)i+1

{
i if i is even,
i + 1 if i is odd.

Proof. First we calculate en(X,L). Let B be the branch locus. Then

e(X) = 2e(Pn) − e(B).

Hence by Lemma 3.3

en(X,L) = e(X)
= 2e(Pn) − e(B)

= 2n + 2 − 1
m

(
(1 − m)n+1 + m(n + 1) − 1

)
= n + 2 − 1

m
(m − 1 + (1 − m)n+1).

Next we consider ei(X,L). First we note that ∆(X,L) = 1 in this case. Since Bs|L| = ∅,
there exists a smooth ladder X ⊃ X1 ⊃ · · · ⊃ Xn−1 of L. Then we see that ∆(Xj , Lj) = 1
and Ln−j

j = 2, where Lj := L|Xj because g(X,L) = m/2 − 1 ≥ 1 = ∆(X,L) and Ln = 2 =
2∆(X,L). Hence Xj is a double covering of Pn−j branched along a smooth hypersurface
of degree 4, and Lj is the pull-back of OPn−j (1). Since ei(X,L) = e(Xn−i), by the above
argument we see that for every integer i with i ≥ 1, we have

ei(X,L) = i + 2 − 1
m

(m − 1 + (1 − m)i+1). (13)
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Here we note that e0(X,L) = Ln = 2 = 0 + 2 − 1
4 (3 + (−3)0+1). Hence (13) also holds for

i = 0.

Next we calculate bi(X,L). By the Barth-type theorem (see e.g. [8, Theorem 7.1.15]), we
have

bi(X) =
{

1, if i is even with i ≤ n − 1,
0, if i is odd with i ≤ n − 1.

Hence we have

bi(X,L) = (−1)i

ei(X,L) − 2
i−1∑
j=0

(−1)jbj(X)


= (−1)i

(
i + 2 − 1

m
(m − 1 + (1 − m)i+1

)
− 2(−1)i ·

{
i−1+1

2 if i is even,
i−1
2 + 1 if i is odd,

=
(

i + 2 − 1
m

(m − 1 + (1 − m)i+1)
)

+ (−1)i+1

{
i if i is even,
i + 1 if i is odd.

We get the assertion of Lemma 3.4.

(3.7.8) The case where (X,L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3, 2, 1, . . . , 1). Then Ln = 1 and Bs|L| = {p} (see [1, (16.7) Theorem and Appendix 1]).

In this case, there exists a smooth ladder X ⊃ X1 ⊃ · · · ⊃ Xn−1 of L such that (Xj , Lj) is
a weighted hypersurface of degree 6 in the weighted projective space P(3, 2, 1, . . . , 1). Since
ei(X,L) = e(Xn−i), in order to calculate ei(X,L) for i ≥ 1, it suffices to calculate e(X).

Let π : X∗ → X be the blowing up at p ∈ X. Then π∗(L) − E is base point free and let
f : X∗ → Pn−1 be the morphism defined by |π∗(L)−E|. In this case, there exists a projective
bundle p : V → Pn−1 and a double covering ρ : X∗ → V such that f = p ◦ ρ. Here we note
that V = PPn−1(OPn−1(2) ⊕OPn−1). Let HV be the tautological line bundle of V and let B
be the branch locus of ρ. Then there exist B1 ∈ |HV − 2π∗OPn−1(1)| and B2 ∈ |3HV | such
that B1

∼= Pn−1 and B = B1 + B2. Here we note that the following equality holds.

e(X) = e(X∗) − e(E) + 1, (14)
e(X∗) = 2e(V ) − e(B), (15)
e(B) = e(B1) + e(B2). (16)

Therefore in order to calculate e(X), we need the value of e(E), e(B1), e(B2), and e(V ).

First we note that
e(E) = e(Pn−1) = n (17)

and
e(B1) = e(Pn−1) = n. (18)

Next we calculate e(V ). By [1, Proof of Lemma in Appendix 2], we see that there exist the
following three exact sequence:

0 → 2HV − 2π∗OPn−1(1) → TV → TPn−1 |V → 0, (19)

0 → OV → H0(Pn−1,OPn−1(1))∨ ⊗ π∗(OPn−1(1)) → TPn−1 |V → 0, (20)

0 → TB2 → TV |B2 → (3HV )|B2 → 0. (21)

From (19), we have
c(TV ) = c(2HV − 2π∗OPn−1(1))c(TPn−1 |V ). (22)
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Hence

cn(V ) = (2HV − 2π∗OPn−1(1))cn−1(TPn−1 |V )
= (2HV − 2π∗OPn−1(1))(n(π∗OPn−1(1))n−1).

By (20), we get
c((π∗OPn−1(1))⊕n) = c(OV )c(π∗TPn−1). (23)

Hence

cn−1(p∗TPn−1) =
(

n

n − 1

)
π∗OPn−1(1))n−1.

Therefore

cn(V ) = (2HV − 2π∗OPn−1(1))(n(π∗OPn−1(1))n−1) (24)
= 2nHV π∗OPn−1(1))n−1

= 2n.

Next we calculate e(B2). Before this, we note the following. Let E := OPn−1(2)⊕OPn−1 and
let H(E) be the tautological line bundle of PPn−1(E). Then V = PPn−1(E) and H(E) = HV .
In this case, since cj(E) = 0 for any j ≥ 2, we have sj(E) = OPn−1(2)j . Therefore

Hj
V π∗OPn−1(1)n−j = OPn−1(1)n−jsj−1(E) = 2j−1. (25)

From (21), we have
c(T |B2) = c(TB2)c(3HV |B2). (26)

From (26) we obtain the following:

cn−1(B2) + cn−2(B2)(3HV |B2) = cn−1(V )B2

cn−2(B2) + cn−3(B2)(3HV |B2) = cn−2(V )B2

...
c1(B2) + 3HV |B2 = c1(V )B2

Therefore

cn−1(B2) = 3(cn−1(V )HV + (−3)cn−2(V )H2
V

+ · · · + (−3)n−2c1(V )Hn−1 + (−3)n−1Hn). (27)

On the other hand, by (22) we have

cj(V ) = (2HV − 2π∗OPn−1(1))cj−1(TPn−1 |V ) + cj(TPn−1 |V )

= 2
(

n

j − 1

)
HV π∗OPn−1(1)j−1 +

((
n

j

)
− 2

(
n

j − 1

))
π∗OPn−1(1)j .

Hence by using (25) we get

cj(V )Hn−j = 2
(

n

j − 1

)
Hn−j+1

V π∗OPn−1(1)j−1 +
((

n

j

)
− 2

(
n

j − 1

))
Hn−j

V π∗OPn−1(1)j

= 2n−j+1

(
n

j − 1

)
+ 2n−j−1

((
n

j

)
− 2

(
n

j − 1

))
= 2n−j

(
n

j − 1

)
+ 2n−j−1

(
n

j

)
.
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Therefore

n−1∑
j=1

(−3)n−j−1cj(V )Hn−j
V = 2

n−1∑
j=1

(−6)n−j−1

(
n

j − 1

)
+

n−1∑
j=1

(−6)n−j−1

(
n

j

)
. (28)

On the other hand

2
n−1∑
j=1

(−6)n−j−1

(
n

j − 1

)
=

1
18

n−1∑
j=1

(−6)n−j+1

(
n

j − 1

)
=

1
18

((1 + (−6))n − (−6)n − 1)

=
1
18

((−5)n + 6n − 1),

and

n−1∑
j=1

(−6)n−j−1

(
n

j

)
= −1

6

n−1∑
j=1

(−6)n−j

(
n

j

)
= −1

6
((1 + (−6))n − (−6)n − 1)

=
1
6
((−6)n − (−5)n + 1).

Since Hn
V = 2n−1, from (27) we get

cn−1(B2) (29)

= 3
(

1
18

((−5)n + 6n − 1) +
1
6
((−6)n − (−5)n + 1) + (−3)n−12n−1

)
= −1

3
(−5)n +

3n + 1
3

.

From (18) and (29), we have

e(B) = e(B1) + e(B2) = 2n +
1 − (−5)n

3
. (30)

By (24) and (30) we get

e(X∗) = 2e(V ) − e(B) = 2n +
(−5)n − 1

3
. (31)

Therefore by (17) and (31)

e(X) = e(X∗) − e(E) + 1 = n +
(−5)n + 2

3
. (32)

So we see that

ei(X,L) = i +
(−5)i + 2

3
(33)

for every integer i with 1 ≤ i ≤ n. Here we note that this equality holds for the case where
i = 0.
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Next we calculate bi(X,L). Since we see from [1, (16.6) 4)] that

bj(X) =
{

1, if j is even with j ≤ n − 1,
0, if j is odd with j ≤ n − 1,

we have

bi(X,L) = (−1)i

ei(X,L) − 2
i−1∑
j=0

(−1)jbj(X)


= (−1)i

(
i +

(−5)i + 2
3

)
− 2(−1)i ·

{
i
2 , if i is even,
i+1
2 + 1, if i is odd,

=

{
(−1)i (−5)i+2

3 , if i is even,
(−1)i (−5)i−1

3 , if i is odd.

Example 3.8 The case where (X,L) is a hyperquadric fibration over a smooth curve C. Let
f : X → C be its morphism. We put E := f∗(L). Then E is a locally free sheaf of rank n + 1
on C. Let π : PC(E) → C be the projection. Then there exists an embedding i : X ↪→ PC(E)
such that f = π ◦ i, X ∈ |2H(E) + π∗(B)| for some B ∈ Pic(C) and L = H(E)|X . Let e := deg E
and b := deg B. Then by [6, Theorem 3.1], we see that the following holds. Let (X,L) be a
hyperquadric fibration over a smooth curve C with dimX = n ≥ 3, and let i be an integer with
0 ≤ i ≤ n. Then

ei(X,L) = (−1)i(2e + (i + 1)b) +
{

2(i + 1)(1 − g(C)) if i is odd,
2i(1 − g(C)) if i is even.

Example 3.9 The case where (X,L) is a scroll over a smooth curve C.
Then by [4, Corollary 3.1 (3.1.1) and Corollary 3.3 (3.3.1)], we see that the following holds. Let E
be an ample vector bundle of rank n on C such that X = PC(E) and L = H(E).

ei(X,L) =
{

i(2 − 2g(C)) if i ≥ 1,
deg E if i = 0.

bi(X,L) =
{

hi(X, C) if i ≥ 1,
deg E if i = 0.

Example 3.10 The case where (X,L) is a scroll over a smooth surface S.
Let E be an ample vector bundle of rank n − 1 on S such that X = PS(E) and L = H(E). Then
by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)], we see that the following holds.

ei(X,L) =


(i − 1)c2(S) if i ≥ 3,
c2(S) + c2(E) if i = 2,
−(c1 (E) + KS)c1(E) if i = 1,
s2(E) if i = 0.

bi(X,L) =


hi(X, C) if m ≥ i ≥ 3,
h2(X, C) + c2(E) − 1 if i = 2,
c1(E)(c1 (E) + KS) + 2 if i = 1,
s2(E) if i = 0.
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