Calculations of sectional classes of special polarized manifolds

YOSHIAKI FUKUMA

Version 1 September 7, 2012

In this note, we will calculate the *i*th sectional class $\text{cl}_i(X, L)$ of some special polarized manifolds (X, L) .

1 Preliminaties

Here we are going to calculate the *i*th sectional class $cl_i(X, L)$ of some special polarized manifolds (X, L) with $n = \dim X \geq 3$ by using its *i*th sectional Euler number $e_i(X, L)$ (see [4, Definition 3.1] $(1))$.

Definition 1.1 Let (X, L) be a polarized manifold of dimension *n*. Then for every integer *i* with $0 \leq i \leq n$ the *i*th sectional class of (X, L) is defined by the following.

$$
cl_i(X, L) := \begin{cases} e_0(X, L), & \text{if } i = 0, \\ (-1)\{e_1(X, L) - 2e_0(X, L)\}, & \text{if } i = 1, \\ (-1)^i \{e_i(X, L) - 2e_{i-1}(X, L) + e_{i-2}(X, L)\}, & \text{if } 2 \le i \le n. \end{cases}
$$

Definition 1.2 Let (X, L) be a polarized manifold of dimension *n*.

(i) The *deficiency* of (X, L) is defined by the following.

 $\det(X, L) := \min\{ i \mid 0 \le i \le n, \text{ cl}_{n-i}(X, L) \ne 0\}$

(ii) The *codegree* of (X, L) is defined by the following.

$$
\mathrm{codeg}(X, L) := \mathrm{cl}_{n-k}(X, L),
$$

where $k = \text{def}(X, L)$.

- **Notation 1.1** (1) Let (X, L) be a hyperquadric fibration over a smooth curve C. We put $\mathcal{E} := f_*(L)$. Then \mathcal{E} is a locally free sheaf of rank $n + 1$ on *C*. Let $\pi : \mathbb{P}_C(\mathcal{E}) \to C$ be the projective bundle. Then $X \in |2H(\mathcal{E}) + \pi^*(B)|$ for some $B \in Pic(C)$ and $L = H(\mathcal{E})|_X$, where $H(\mathcal{E})$ is the tautological line bundle of $\mathbb{P}_C(\mathcal{E})$. We put $e := \deg \mathcal{E}$ and $b := \deg B$.
	- (2) (See [2, (13.10) Chapter II].) Let (M, A) be a \mathbb{P}^2 -bundle over a smooth curve *C* and $A|_F =$ $\mathcal{O}_{\mathbb{P}^2}(2)$ for any fiber *F* of it. Let $f : M \to C$ be the fibration and $\mathcal{E} := f_*(K_M + 2A)$. Then *E* is a locally free sheaf of rank 3 on *C*, and $M \cong \mathbb{P}_C(\mathcal{E})$ such that $H(\mathcal{E}) = K_M + 2A$. In this case, $A = 2H(\mathcal{E}) + f^*(B)$ for a line bundle *B* on *C*, and by the canonical bundle formula $K_M = -3H(\mathcal{E}) + f^*(K_C + \det \mathcal{E})$. Here we set $e := \deg \mathcal{E}$ and $b := \deg B$.

Definition 1.3 Let $\mathcal F$ be a vector bundle on a smooth projective variety X. Then for every integer *j* with $j \geq 0$, the *j*th *Segre class* $s_j(\mathcal{F})$ *of* \mathcal{F} is defined by the following equation: $c_t(\mathcal{F}^{\vee})s_t(\mathcal{F}) = 1$, where $\mathcal{F}^{\vee} := Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$, $c_t(\mathcal{F}^{\vee})$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_t(\mathcal{F}) = \sum_{j\geq 0} s_j(\mathcal{F}) t^j$.

Remark 1.1 (a) Let $\mathcal F$ be a vector bundle on a smooth projective variety *X*. Let $\tilde s_j(\mathcal F)$ be the *j*th Segre class which is defined in [7, Chapter 3]. Then $s_j(\mathcal{F}) = \tilde{s}_j(\mathcal{F}^{\vee})$.

(b) For every integer *i* with $1 \leq i$, $s_i(\mathcal{F})$ can be written by using the Chern classes $c_j(\mathcal{F})$ with 1 ≤ *j* ≤ *i*. (For example, $s_1(F) = c_1(F)$, $s_2(F) = c_1(F)^2 - c_2(F)$, and so on.)

2 Calculations

Example 2.1 (i) The case where (X, L) is $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$. Then by [6, Example 3.1] we have

$$
cl_i(X, L) = \begin{cases} 1, & \text{if } i = 0, \\ 0, & \text{if } i \ge 1. \end{cases}
$$

(ii) The case where (X, L) is $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)).$

Then by [6, Example 3.2] we have $\text{cl}_i(X, L) = 2$ for $0 \leq i \leq n$. In this case, $\text{def}(X, L) = 0$ and $codeg(X, L) = 2$.

(iii) The case where (X, L) is $(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)).$

Then by [6, Example 3.3] we have

$$
cl_i(X, L) = \begin{cases} 16, & \text{if } i = 0, \\ 40, & \text{if } i = 1, \\ 40, & \text{if } i = 2, \\ 20, & \text{if } i = 3, \\ 5, & \text{if } i = 4. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 5$. (iv) The case where (X, L) is $(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2)).$ Then by [6, Example 3.4] we have

$$
cl_i(X, L) = \begin{cases} 16, & \text{if } i = 0, \\ 40, & \text{if } i = 1, \\ 40, & \text{if } i = 2, \\ 20, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 20$. (v) The case where (X, L) is $(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(3)).$ Then by [6, Example 3.5] we have

$$
cl_i(X, L) = \begin{cases} 27, & \text{if } i = 0, \\ 72, & \text{if } i = 1, \\ 72, & \text{if } i = 2, \\ 32, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 32$.

(vi) The case where (X, L) is a Veronese fibration over a smooth curve C . Here we use Notation 1.1 (2) . Then by [6, Example 3.6] we have

$$
cl_i(X, L) = \begin{cases} 8e + 12b, & \text{if } i = 0, \\ 20e + 28b, & \text{if } i = 1, \\ 36e + 47b, & \text{if } i = 2, \\ 41e + 52b, & \text{if } i = 3. \end{cases}
$$

First we note that

$$
8e + 12b = L^3 \tag{1}
$$

$$
2g(C) - 2 + e + 2b = 0
$$
 (2)

$$
g(X, L) = 1 + 2e + 2b \tag{3}
$$

Here we set $L^3 = 4m$. Then *m* is an integer with $m \ge 1$. We see from (1) and (2) that $b =$ $4(1 - g(C)) - m$ and $e = 6(g(C) - 1) + 2m$. Therefore

$$
cl_1(X, L) = 20e + 28b = 12m + 8(g(C) - 1) > 0.
$$

Next we consider $\text{cl}_2(X, L)$. Then

$$
cl_2(X, L) = 36e + 47b = 25m + 28(g(C) - 1).
$$

If $g(C) = 0$ and $m = 1$, then we have $e = -4$ and $b = 3$. But then by (3) we have $g(X, L) = -1 < 0$ and this is impossible. Hence $g(C) \geq 1$ or $m \geq 2$, and we get

$$
cl_2(X, L) \ge 25m + 28(g(C) - 1) \ge 22.
$$

Finally we consider $\text{cl}_3(X, L)$. Then

$$
cl_3(X, L) = 41e + 52b = 30m + 38(g(C) - 1).
$$

By the same argument as above, the case where $g(C) = 0$ and $m = 1$ does not occur. Hence $g(C) \geq 1$ or $m \geq 2$, and we get

$$
cl_3(X, L) \ge 30m + 38(g(C) - 1) \ge 22.
$$

Therefore def(*X, L*) = 0 and codeg(*X, L*) = 30*m* + 38($g(C) - 1$).

(vii) The case where (X, L) is a Del Pezzo manifold with $n = \dim X \geq 3$.

Here we note that by [2, (8.11) Theorem], we have $L^n \leq 8$ and (X, L) is one of the following:

 $(vii.1)$ $(X, L) \cong (\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(2)).$ Then by $[6, \text{Example } 3.7 \ (3.7.1)]$ we have

$$
cl_i(X, L) = \begin{cases} 8, & \text{if } i = 0, \\ 16, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 4, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 4$.

(vii.2) *X* is the blowing up of \mathbb{P}^3 at a point and $L = \pi^*(\mathcal{O}_{\mathbb{P}^3}(2)) - E$, where $\pi : X \to \mathbb{P}^3$ is its birational morphism and E is the exceptional divisor. Then by [6, Example 3.7 (3.7.2)] we have

$$
cl_i(X, L) = \begin{cases} 7, & \text{if } i = 0, \\ 14, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 4, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 4$.

(vii.3) (X, L) is either

$$
(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \otimes_{i=1}^3 p_i^* \mathcal{O}_{\mathbb{P}^1}(1)), (\mathbb{P}^2 \times \mathbb{P}^2, \otimes_{i=1}^2 p_i^* \mathcal{O}_{\mathbb{P}^2}(1)) \text{ or } (\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2}), H(T_{\mathbb{P}^2}))
$$

where p_i is the *i*th projection and $T_{\mathbb{P}^2}$ is the tangent bundle of \mathbb{P}^2 .

(vii.3.1) The case where $(X, L) \cong (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \otimes_{i=1}^3 p_i^* \mathcal{O}_{\mathbb{P}^1}(1)).$ Then by $[6, Example 3.7 (3.7.3.1)]$ we have

$$
cl_i(X, L) = \begin{cases} 6, & \text{if } i = 0, \\ 12, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 4, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 4$.

(vii.3.2) The case where $(X, L) \cong (\mathbb{P}^2 \times \mathbb{P}^2, \otimes_{i=1}^2 p_i^* \mathcal{O}_{\mathbb{P}^2}(1)).$ Then by $[6, Example 3.7 (3.7.3.2)]$ we have

$$
cl_i(X, L) = \begin{cases} 6, & \text{if } i = 0, \\ 12, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 6, & \text{if } i = 3, \\ 3, & \text{if } i = 4. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 3$.

(vii.3.3) The case where $(X, L) \cong (\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2}), H(T_{\mathbb{P}^2}))$. Then by $[6, \text{Example } 3.7 \ (3.7.3.3)]$ we have

$$
cl_i(X, L) = \begin{cases} 6, & \text{if } i = 0, \\ 12, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 6, & \text{if } i = 3. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 6$.

(vii.4) The case where (X, L) is a linear section of the Grassmann variety $Gr(5, 2)$ parametrizing lines in \mathbb{P}^4 , embedded in \mathbb{P}^9 via the Plücker embedding. Then $3 \le n \le 6$ and $L^n = 5$.

By [6, Example 3.7 (3.7.4)] we have

$$
cl_i(X, L) = \begin{cases} 5, & \text{if } i = 0, \\ 10, & \text{if } i = 1, \\ 12, & \text{if } i = 2, \\ 10, & \text{if } i = 3, \\ 5, & \text{if } i = 4 \text{ and } 4 \le n \le 6, \\ 0, & \text{if } i = 5 \text{ and } 5 \le n \le 6, \\ 0, & \text{if } i = 6 \text{ and } n = 6. \end{cases}
$$

In this case, if $n = 6$ (resp. 5, 4, 3), then $\det(X, L) = 2$ (resp. 1, 0, 0) and $\operatorname{codeg}(X, L) = 5$ (resp. 5, 5, 10).

(vii.5) The case where (X, L) is a complete intersection of two hyperquadrics in \mathbb{P}^{n+2} . Then by $[6, \text{Example } 3.7 \ (3.7.5)]$ we have

$$
\text{cl}_i(X, L) = 4i + 4.
$$

In this case, $\det(X, L) = 0$ and $\operatorname{codeg}(X, L) = 4n + 4$.

(vii.6) The case where *X* is a hypercubic in \mathbb{P}^{n+1} and $L = \mathcal{O}_X(1)$. Then by $[6, \text{Example } 3.7 (3.7.6)]$ we have

$$
\mathrm{cl}_i(X, L) = 3 \cdot 2^i.
$$

In this case, $\det(X, L) = 0$ and $\operatorname{codeg}(X, L) = 3 \cdot 2^n$.

In general, the following holds by Definitions 1.1, 1.2 and $[6, \text{ Lemma } 3.3]$ (see also $[8, (9)$) Proposition in II]).

Proposition 2.1 *If* X *is a hypersurface of degree* m *in* \mathbb{P}^{n+1} *, then*

$$
cl_i(X, L) = m(m-1)^i
$$
, $def(X, L) = 0$ and $codeg(X, L) = m(m-1)^n$.

(vii.7) The case where X is a double covering of \mathbb{P}^n branched along a smooth hypersurface of degree 4, and *L* is the pull-back of $\mathcal{O}_{\mathbb{P}^n}(1)$.

Then by $[6, Example 3.7 (3.7.7)]$ we have

$$
cl_i(X, L) = \begin{cases} 2, & \text{if } i = 0, \\ 4 \cdot 3^{i-1}, & \text{if } i \ge 1. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 4 \cdot 3^{n-1}$.

In general, we can prove the following by using [6, Lemma 3.4].

Proposition 2.2 If X is a double covering of \mathbb{P}^n branched along a smooth hypersurface of *degree m,* and *L is the pull back of* $\mathcal{O}_{\mathbb{P}^n}(1)$ *, then for* $i \geq 1$ *we have*

 $cl_i(X, L) = m(m-1)^{i-1}$, $\text{def}(X, L) = 0$ *and* $\text{codeg}(X, L) = m(m-1)^{n-1}$.

(vii.8) The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space $\mathbb{P}(3, 2, 1, \ldots, 1).$

Then by $[6, \text{Example } 3.7 \ (3.7.8)]$ we have

$$
cl_i(X, L) = \begin{cases} 1, & \text{if } i = 0, \\ 2, & \text{if } i = 1, \\ 12 \cdot 5^{i-2}, & \text{if } i \ge 2. \end{cases}
$$

In this case, $\text{def}(X, L) = 0$ and $\text{codeg}(X, L) = 12 \cdot 5^{n-2}$.

(viii) The case where (X, L) is a hyperquadric fibration over a smooth curve C . Here we use notation in Notation 1.1 (1). Then by [6, Example 3.8] we have

$$
cl_i(X, L) = \begin{cases} 2e + b, & \text{if } i = 0, \\ 6e + 4b + 4(g(C) - 1), & \text{if } i = 1, \\ 8e + 4ib + 4(g(C) - 1), & \text{if } i \ge 2. \end{cases}
$$

Here we consider a lower bound of $\text{cl}_i(X, L)$ for $i \geq 1$.

Proposition 2.3 *Let* (X, L) *be a hyperquadric fibration over a smooth curve C. If* $i \geq 1$ *, then* $\text{cl}_i(X, L) \geq 4.$

Proof. Then we use the following inequalities.

$$
2e + b > 0 \tag{4}
$$

$$
2e + (n+1)b \geq 0 \tag{5}
$$

(A) First we consider the case $i = 1$. Then $g(X, L) \geq 2$ holds because (X, L) is a hyperquadric fibration over a smooth curve. Hence by definition we have $cl_1(X, L) = 2(g(X, L) + L^n - 1) \geq 4$. (B) Next we consider the case $i \geq 2$.

 $(B.1)$ If $b < 0$, then by (5) we have

$$
2e + ib = 2e + (n+1)b - (n+1-i)b
$$

\n
$$
\geq -(n+1-i)b
$$

\n
$$
\geq n+1-i.
$$
 (6)

Hence

$$
cl_i(X, L) = 8e + 4ib + 4(g(C) - 1)
$$

= 4(2e + ib) + 4(g(C) - 1)

$$
\geq 4(n + 1 - i) + 4(g(C) - 1)
$$

= 4(n - i) + 4g(C)

$$
\geq 0.
$$

If $cl_i(X, L) = 0$, then $i = n$ and $g(C) = 0$. Then by (5) we have $0 = cl_i(X, L) = 4(2e + (n +$ 1)*b*) $-4b-4 \ge -4b-4 \ge 0$ and we get $2e + (n+1)b = 0$ and $b = -1$. Since $g(C) = 0$, we see that *E* can be expressed as

$$
\mathcal{E} = \bigoplus_{i=0}^{n} \mathcal{O}(e_i).
$$

We may assume that $e_0 \leq \cdots \leq e_n$. Since $b = -1$, we see that $e_0 \geq 1$ by the same argument as in the proof of [1, Lemma (3.19)]. Hence

$$
e = \sum_{i=0}^{n} e_i \ge n + 1.
$$

But this is impossible because

$$
e = -\frac{(n+1)}{2}b = \frac{(n+1)}{2}.
$$

Hence $\text{cl}_i(X, L) > 0$ in this case.

(B.2) If *b* \geq 0, then by (4) we have $2e + ib = 2e + b + (i - 1)b \geq 1 + (i - 1)b$. Hence

$$
cl_i(X, L) = 8e + 4ib + 4(g(C) - 1)
$$

\n
$$
\geq 4(i - 1)b + 4g(C)
$$

\n
$$
\geq 0.
$$

If $\text{cl}_i(X, L) = 0$, then $b = 0$ and $g(C) = 0$. Then we have $\text{cl}_i(X, L) = 8e - 4$. But since $\text{cl}_i(X, L) = 0$, we have $e = \frac{1}{2}$ and this is impossible. Therefore $\text{cl}_i(X, L) > 0$ holds in this case, too.

Since $\text{cl}_i(X, L)$ for $i \geq 2$ is divided by 4, we see that $\text{cl}_i(X, L) \geq 4$.

 \Box

Hence we see from Proposition 2.3 that $\det(X, L) = 0$ and $\operatorname{codeg}(X, L) = 8e + 4nb + 4(g(C) - 1)$.

(ix) The case where (X, L) is a scroll over a smooth curve C with $n = \dim X \geq 3$. Then there exists an ample vector bundle $\mathcal E$ on C of rank n such that $X = \mathbb P_S(\mathcal E)$ and $L = H(\mathcal E)$. Then by [6, Example 3.9] we have

$$
cl_i(X, L) = \begin{cases} s_1(\mathcal{E}), & \text{if } i = 0, \\ 2g(C) - 2 + 2c_1(\mathcal{E}), & \text{if } i = 1, \\ c_1(\mathcal{E}), & \text{if } i = 2, \\ 0, & \text{if } i \ge 3. \end{cases}
$$

In this case, $\text{def}(X, L) = n - 2$ and $\text{codeg}(X, L) = c_1(\mathcal{E})$.

(x) The case where (X, L) is $(\mathbb{P}_S(\mathcal{E}), H(\mathcal{E}))$, where *S* is a smooth surface and *E* is an ample vector bundle of rank $n-1$. Then by [6, Example 3.10] we have

$$
cl_i(X, L) = \begin{cases} s_2(\mathcal{E}), & \text{if } i = 0, \\ (s_1(\mathcal{E}) + K_S)s_1(\mathcal{E}) + 2s_2(\mathcal{E}), & \text{if } i = 1, \\ c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E}), & \text{if } i = 2, \\ 2c_2(\mathcal{E}) + (c_1(\mathcal{E}) + K_S)c_1(\mathcal{E}), & \text{if } i = 3, \\ c_2(\mathcal{E}), & \text{if } i = 4 \text{ and } n \ge 4, \\ 0, & \text{if } i \ge 5 \text{ and } n \ge 5. \end{cases}
$$

(x.1) Assume that $K_S + c_1(\mathcal{E})$ is not nef. Here we note that rank $\mathcal{E} \geq 2 = \dim S$. Then by a result of [9, Theorem 1] we see that $(S, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(1))$. In this case, $c_2(S) = 3$, $c_1(\mathcal{E})^2 = 4$, $K_Sc_1(\mathcal{E}) = -6$, $c_2(\mathcal{E}) = 1$, $s_2(\mathcal{E}) = 3$. So we get the following.

$$
cl_i(X, L) = \begin{cases} 3, & \text{if } i = 0, \\ 4, & \text{if } i = 1, \\ 3, & \text{if } i = 2, \\ 0, & \text{if } i = 3. \end{cases}
$$

Hence in this case $\det(X, L) = 1$ and $\operatorname{codeg}(X, L) = 3$.

Remark 2.1 Here we note that if $(S, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(1)),$ then $(X, L) = (\mathbb{P}_S(\mathcal{E}), H(\mathcal{E}))$ is a scroll over \mathbb{P}^1 .

(x.2) Next we consider the case where $K_S + c_1(\mathcal{E})$ is nef. Then the following holds.

Claim 2.1 $cl_i(X, L) > 0$ *for every* $0 \le i \le \min\{4, n\}$ *.*

Proof. First of all, since \mathcal{E} is ample, we see from [7, Example 12.1.7] and Remark 1.1 that $cl_0(X, L) = s_2(\mathcal{E}) > 0$. Next we consider the case of $i \geq 1$. $(K_S + c_1(\mathcal{E}))c_1(\mathcal{E}) \geq 0$ because $K_S + c_1(\mathcal{E})$ is nef. Moreover $c_2(\mathcal{E}) > 0$ since \mathcal{E} is ample. Hence $cl_1(X, L) > 0$, $cl_3(X, L) > 0$ and $cl_4(X, L) > 0$ for $n \geq 4$. (Here we note that $c_1(\mathcal{E}) = s_1(\mathcal{E})$.) Finally we consider the case of $\text{cl}_2(X, L)$. We note the following.

- (a) If $\kappa(S) \geq 0$, then $c_2(S) \geq 0$.
- (b) If $\kappa(S) = -\infty$ and $q(S) = 0$, then $c_2(S) \geq 3$.
- (c) If $\kappa(S) = -\infty$ and $q(S) \geq 1$, then $c_2(S) \geq 4(1 q(S))$.

So if $\kappa(S) \geq 0$ or $\kappa(S) = -\infty$ and $q(S) = 0$, then

$$
cl_2(X, L) = c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E})
$$

\n
$$
\geq c_1(\mathcal{E})^2 > 0.
$$

If $\kappa(S) = -\infty$ and $q(S) \geq 1$, then

$$
cl_2(X, L) = c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E})
$$

\n
$$
\geq c_1(\mathcal{E})^2 + 4(g(S, c_1(\mathcal{E})) - q(S)).
$$

Since $\kappa(S) = -\infty$, we have $g(S, c_1(\mathcal{E})) \geq q(S)$ by [3, Theorem 2.1]. Therefore we get $cl_2(X, L) \geq$
 \mathcal{E} ² > 0 $c_1(\mathcal{E})^2 > 0.$

Therefore, in this case, we get $\text{def}(X, L) = \max\{0, 4 - n\}$ and

$$
\operatorname{codeg}(X, L) = \begin{cases} 2c_2(\mathcal{E}) + (c_1(\mathcal{E}) + K_S)c_1(\mathcal{E}), & \text{if } n = 3, \\ c_2(\mathcal{E}), & \text{if } n \ge 4. \end{cases}
$$

In general, if *X* is a projective bundle over a smooth projective variety *Y* of dimension *m* with $\dim X \geq 2m$ and *L* is the tautological line bundle $H(\mathcal{E})$, then we can calculate def(*X, L*) and $codeg(X, L)$.

Proposition 2.4 *Let X be an n*-dimensional projective bundle $P_Y(\mathcal{E})$ *over a smooth projective variety Y of dimension m and let* $H(\mathcal{E})$ *be the tautological line bundle. Assume that* $n > 2m$ *. Then* def(*X,H*(\mathcal{E})) = *n −* 2*m and* codeg(*X,H*(\mathcal{E})) = $c_m(\mathcal{E})$ *.*

Proof. If $j - 2 \ge 2m - 1$, that is, $j \ge 2m + 1$, then by [5, Theorem 3.1 (3.1.1)] we have

$$
cl_j(P_Y(\mathcal{E}), H(\mathcal{E})) = (-1)^j (e_j(P_Y(\mathcal{E}), H(\mathcal{E})) - 2e_{j-1}(P_Y(\mathcal{E}), H(\mathcal{E})) + e_{j-2}(P_Y(\mathcal{E}), H(\mathcal{E})))
$$

= (-1)^j ((j - m + 1)c_m(Y) - 2(j - m)c_m(Y) + (j - m - 1)c_m(Y))
= 0.

If $j = 2m$, then by [5, Theorem 3.1 (3.1.1) and (3.1.2)]

$$
cl_{2m}(P_Y(\mathcal{E}), H(\mathcal{E})) = (-1)^{2m} (e_{2m}(P_Y(\mathcal{E}), H(\mathcal{E})) - 2e_{2m-1}(P_Y(\mathcal{E}), H(\mathcal{E})) + e_{2m-2}(P_Y(\mathcal{E}), H(\mathcal{E})))
$$

= ((m + 1)c_m(Y) - 2mc_m(Y) + (m - 1)c_m(Y) + c_m(\mathcal{E}))
= c_m(\mathcal{E}) > 0.

Hence by Definition 1.2 we have

$$
\begin{array}{rcl}\n\det(X, H(\mathcal{E})) & = & \min\{ \ i \mid \mathrm{cl}_{n-i}(X, H(\mathcal{E})) \neq 0 \} = n - 2m. \\
\operatorname{codeg}(X, H(\mathcal{E})) & = & c_m(\mathcal{E}).\n\end{array}
$$

This completes the proof.

Assume that (X, L) is a \mathbb{P}^{n-3} -bundle over a smooth projective variety *Y* with $n \geq 4$ and dim *Y* = 3. Let *E* be an ample vector bundle on *Y* such that $X \cong \mathbb{P}_Y(\mathcal{E})$ and $L = H(\mathcal{E})$. Then by [5, Theorem 3.1] $\text{cl}_i(X, L)$ is the following.

 \Box

$$
cl_i(X, L) = \begin{cases} s_3(\mathcal{E}), & \text{if } i = 0, \\ 3s_3(\mathcal{E}) + (s_1(\mathcal{E}) + K_Y)s_2(\mathcal{E}), & \text{if } i = 1, \\ 3s_3(\mathcal{E}) + 12(s_1(\mathcal{E}) + K_Y)s_2(\mathcal{E}) \\ + (s_1(\mathcal{E}) + K_Y)s_1(\mathcal{E})^2 + c_2(Y)s_1(\mathcal{E}), & \text{if } i = 2, \\ -c_3(Y) + 2c_3(\mathcal{E}) - 2c_1(\mathcal{E})c_2(\mathcal{E}) + 4c_1(\mathcal{E})^3 \\ + 3K_Yc_1(\mathcal{E})^2 + 2c_2(Y)c_1(\mathcal{E}), & \text{if } i = 3, \\ 3c_3(\mathcal{E}) + 12(c_1(\mathcal{E}) + K_Y)c_2(\mathcal{E}) \\ + (c_1(\mathcal{E}) + K_Y)c_1(\mathcal{E})^2 + c_2(Y)c_1(\mathcal{E}), & \text{if } i = 4, \\ 3c_3(\mathcal{E}) + (c_1(\mathcal{E}) + K_Y)c_2(\mathcal{E}), & \text{if } i = 5 \text{ and } n \ge 5, \\ c_3(\mathcal{E}), & \text{if } i = 6 \text{ and } n \ge 6, \\ 0, & \text{if } i \ge 7 \text{ and } n \ge 7. \end{cases}
$$

By considering the above results, we can propose the following conjecture.

Conjecture 2.1 *Assume that* (X, L) *is a* \mathbb{P}^{n-m} *-bundle over a smooth projective variety* Y *with* $\dim Y = m$ *. Let* \mathcal{E} *be an ample vector bundle on* Y *such that* $X \cong \mathbb{P}_Y(\mathcal{E})$ *and* $L = H(\mathcal{E})$ *. Assume that* $n \geq 2m$ *. For any integer i with* $0 \leq i \leq m$ *we set*

$$
F_i(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E})) := \mathrm{cl}_i(X,L).
$$

Then for any integer j with $m \leq j \leq 2m$ *we have*

$$
cl_j(X, L) = F_{2m-j}(c_1(\mathcal{E}), \ldots, c_m(\mathcal{E})).
$$

In particular

$$
F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}))=F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).
$$

Remark 2.2 This conjecture is true for the case where $m = 1$, 2 and 3.

By looking at the above examples, we see that $\text{cl}_{i+1}(X, L) = 0$ if $\text{cl}_{i}(X, L) = 0$. So we can propose the following problem.

Problem 2.1 *Let* (*X, L*) *be a polarized manifold of dimension n and let i be an integer with* 0 ≤ *i* ≤ *n* − 1*. Is it true that* $\text{cl}_{i+1}(X, L) = 0$ *if* $\text{cl}_{i}(X, L) = 0$?

References

- [1] T. Fujita, *Classification of polarized manifolds of sectional genus two,* the Proceedings of "Algebraic Geometry and Commutative Algebra" in Honor of Masayoshi Nagata (1987), 73–98.
- [2] T. Fujita, *Classification Theories of Polarized Varieties,* London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990).
- [3] Y. Fukuma, *A lower bound for the sectional genus of quasi-polarized surfaces,* Geom. Dedicata 64 (1997), 229–251.
- [4] Y. Fukuma, *On the sectional invariants of polarized manifolds,* J. Pure Appl. Algebra 209 (2007), 99–117.
- [5] Y. Fukuma, *Sectional invariants of scroll over a smooth projective variety,* Rend. Sem. Mat. Univ. Padova 121 (2009), 93–119.
- [6] Y. Fukuma, *Calculations of sectional Euler numbers and sectional Betti numbers of special polarized manifolds,* preprint, http://www.math.kochi-u.ac.jp/fukuma/Calculations.html
- [7] W. Fulton, *Intersection Theory,* Ergebnisse der Mathematik und ihrer Grenzgebiete 2 (1984), Springer-Verlag.
- [8] S. L. Kleiman, *Tangency and Duality,* in Vanquver Conference in Algebraic Geometry, Canad. Math. Soc. Conf. Proc., 6 (198), 163–225.
- [9] Y-G. Ye and Q. Zhang, *On ample vector bundles whose adjunction bundles are not numerically effective,* Duke Math. J. 60 (1990), 671–687.

Department of Mathematics Faculty of Science Kochi University Akebono-cho, Kochi 780-8520 Japan E-mail: fukuma@kochi-u.ac.jp