
PRELIMINARIES ON DIXMIER CONJECTURE

YOSHIFUMI TSUCHIMOTO

Abstract. We gather some basic facts concerning algebra endomorphisms of
Weyl algebras An(k) for fields k with positive characteristic p. These facts
could lead some preliminary results on Dixmier conjecture.
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1. Introduction

Our aim in this paper is to gather some basic facts concerning algebra endomor-
phisms of Weyl algebras An(k) for fields k with positive characteristic p.
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A study of such object may lead (Lemma 2) to some progress in the Dixmier
conjecture (conjecture 1) which states that any algebra endomorphism of Weyl
algebra over a field of characteristic zero is actually invertible.

It turns out that An(k) is a free module of rank p2n over its center Z(An(k))
(Lemma 3) and that any k-algebra endomorphism φ of An(k) sends central elements
to central elements (Lemma4).

Thus the study of φ may be deeply related to the study of sheaves of matrix
algebras over polynomial algebras Z(An(k)).

In particular, we may use traces to obtain a nice formula for candidate of inverse
of φ (Proposition 1).

On the other hand, suppose we are given an algebra endomorphism φ of the Weyl
algebra An(K) over an algebraic number field K. Then we have, for almost all (that
is, for all except finite number of) prime ideal p of K, an algebra endomorphism
of An(k(p) over the residue field k(p). We prove that almost all such maps are
injective and that geometric degree of these maps are bounded by a constant which
is independent of p (Proposition 2).

2. Notations

All rings are assumed to be unital, associative. All homomorphisms are assumed
to be unital. N = {0, 1, 2, 3, . . .}

For any ring R and for any positive integer l, we put

Ml(R) = (the set of l× l-matrix with coefficients in R.)

For any ring k, we denote by An(k) the Weyl algebra.

An(k) = k〈ξ1, ξ2, . . . , xn, η1, η2, . . . , ηn〉/(ηjξi − ξiηj − δij ; 1 ≤ i, j ≤ n)

where δij is the Kronecker’s delta.
If k is a field with characteristic p, then we further employ the following notations.
Zn(k) = Z(An(k)) the center of An(k) (Later we prove that Zn(k) is actually

equal to k[ξp
1 , ξ

p
2 , . . . , ξ

p
n, η

p
1 , η

p
2 , . . . , η

p
i ]).

Ti = (ξp
i )1/p

Ui = (ηp
i )1/p

Sn(k) = Zn(k)1/p = k1/p[T1, T2, . . . , Tn, U1, U2, . . . , Un]. (p-th roots are taken
in the usual sense of commutative algebra. Sn(k) is a commutative algebra over
Zn(k).)
Kn(k) = Q(Zn(k)), the quotient field of Zn(k).
Dn(k) = An(k) ⊗Zn(k) Kn(k)
Ln(k) = Q(Sn(k)).
Bn(k) = An(k) ⊗Zn(k) Sn(k) (∼= Mpn(Sn(k)))

Vn(k) = ⊕pn

i=1Sn(k)
En(k) = An(k) ⊗Zn(k) Ln(k) (∼= Mpn(Ln(k)))
αi = ξi − Ti

βi = ηi − Ui

An : a copy of An

(Identified with the image of φ when φ is injective).
Zn = Z(An) : a copy of Zn

Sn : a copy of Sn (extension of Zn)
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Similarly we use a notation ξi, ηi, Ti, Ui to indicate a copy of non-bar counter-
parts.

For a matrix x, we denote by λ(x), ρ(x), ad(x) the left action, the right action,
and the adjoint action by x, respectively.

λ(x)y = xy, ρ(x)y = yx, ad(x)y = xy − yx

2.1. A presentation of the full matrix algebra.

Lemma 1. Let k be a field of characteristic p. Then a k-algebra M which is
generated by α1, α2, . . . , αn, β1, β2, . . . , βn with the relations

[βj , αi] = δji, β
p
j = 0, αp

i = 0 (i, j = 1, 2, . . . , n)

(where δij is the Kronecker’s delta) is isomorphic to the full matrix algebra Mpn(k).

Proof. Since Mpn(k) is isomorphic to a tensor product of n copies of the matrix
algebra Mp(k), we may assume that n = 1. We define elements µ, ν ∈ Mp(k) as
follows.

(1) µ = (δi+1,j), ν = ((p− j)δi,j+1)

Then µ, ν satisfies the same relation as α1, β1. In other words, we have a k-
algebra homomorphism φ from M to Mp(k) with φ(α1) = µ, φ(β1) = ν.

On the other hand, it is easy to see that the algebra M is linearly generated by
{αiβj ; 0 ≤ i, j ≤ p− 1} and hence that its dimension is not greater than p2.

By a dimension argument we see that the algebra homomorphism φ is an iso-
morphism.

�

2.2. light exponential function. For an element L of an algebra over a field k
of characteristic p > 0, we may define light exponential of L by

ex(L) =

p−1
∑

i=0

1

i!
Li.

(The ex is obtained by cut exponential function off the tail after p).

If L1, L2 commutes and Li
1L

j
2 = 0 whenever i+ j ≥ p, then we have

ex(L1 + L2) = ex(L1) ex(L2)

In particular, if Lp = 0 then we have

ex(L) ex(−L) = 1

There is a differential equation for the light exponential function.

d/dT (ex(T )) = ex(T ) + T p−1

Furthermore, the following equations holds for any constant c1, c2.

ex(c1µ) ex(c2ν) = ex(c2(ν − c1E − cp1µ
p−1)) ex(c1µ)

ex(c1µ) ex(c2ν) ex(−c1µ) = ex(c2(ν − c1E − cp1µ
p−1))

[ex(c1ν), µ] = c1 ex(c1ν) + cp1ν
p−1

[ex(c1µ), ν] = −c1 ex(c1µ) − cp1µ
p−1

ex(c1µ)ν ex(−c1µ) = ν − c11p − cp1µ
p−1
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ex(c1ν)µ ex(−c1ν) = µ+ c11p + cp1ν
p−1

ex(−c1µ)ν ex(c1µ) = ν + c11p + cp1µ
p−1

ex(−c1ν)µ ex(c1ν) = µ− c11p − cp1ν
p−1

3. First properties of Weyl algebras

For any ring k we denote by An(k) the Weyl algebra:

An(k) = k〈ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn〉/(ηjξi − ξiηj − δij)

where δij is the Kronecker’s delta.
One of the good ways to compute multiplications of elements in An(k) appears

in [2, formula (11,4)]. For any variable η, ξ with the canonical commutation relation
ηξ−ξη = 1,and for any pair of “normally ordered” polynomials f(ξ, η) =

∑

fi,jξ
iηj

and g(ξ, η) =
∑

gi,jξ
iηj , one has the following formula

f(ξ, η)g(ξ, η) =

∞
∑

k=0

1

k!
∂k

ηf(ξ, η) ∗ ∂k
ξ g(ξ, η)

where ∗ stands for an ‘multiplication as though ξ, η commutes’. This formula is
valid and proved in the book cited above only if characteristic of the coefficient
field is 0. If the characteristic p of the coefficient field is positive, then we replace
∞ in the above formula by p− 1 and obtain a valid formula in this case. The proof
is almost the same. It is well suited for computer calculation using commutative
polynomials and differentiations.

Dixmier conjectures that

Conjecture 1. Every C-algebra endomorphism φ of An(C) is invertible (that is,
it is an automorphism).

Since An(C) is simple (has no nontrivial both-sided ideal), we know that φ above
is injective. The question therefore is the surjectivity of φ.

3.1. reduction to characteristic p. Suppose we are given a C-algebra endo-
morphism φ of An(C). Since the algebra An(C) is finitely generated over C, the
endomorphism φ is actually defined over a ring R which is finitely generated algebra
over Q.

By a specialization argument we may assume R = O(K)[1/f ], where K is a finite
extension field of Q, O(K) is the ring of all algebraic integers in K, f is a non zero
element of O(K).

For almost all (that is, all except finite number of) prime ideals p of O(K),
we obtain an algebra endomorphism φp of an algebra An(k(p)) over k(p) where
k(p) = O(K)/p is a field of a positive characteristic p.

Lemma 2. φ is invertible if and only if homomorphisms φp are invertible for all
except finite number of primes p ∈ Spec(O(K)).

Proof. The “only if” part is clear. To prove “if”, we suppose on the contrary that
φ is not invertible. This means, as we mentioned, that φ is not surjective. Then
there exists a nonzero linear functional 1 χ such that χ ◦ φ = 0. It is easy to
see that χ defines a non zero linear functional χp on An(k(p)) for all except finite

1Note added in proof: The functional χ should be chosen more carefully. We will correct this
in a forthcoming paper.
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number of primes p, and that χpe ◦ φp = 0. this is a contradiction, and the lemma
is proved. �

It is thus worthwhile to study An(k) and its automorphism when k has a positive
characteristic.

3.2. Weyl algebras over fields of positive characteristics and their centers.

Lemma 3. Let k be a field of characteristic p. We have the following facts.

(1) ξp
i , η

p
j belongs to the center of An(k).

(2) More precisely, the center Zn(k) = Z(An(k)) of the ring An(k) is given by

Zn(k) = k[ξp
1 , . . . , ξ

p
n, η

p
1 , . . . , η

p
n].

(3) An(k) is a free Zn(k)-module of rank p2n.
(4) Let a = (a1, . . . , an), b = (b1, . . . bn) be elements of kn. Let Ia,b be an ideal

of An(k) generated by (ξ1 − a1)
p, . . . , (ξn − an)p, (η1 − b1)

p, . . . , (ηn − bn)p.
Then we have

An(k)/Ia,b

πa,b

∼= Mpn(k).

(5) If the field k is algebraically closed, then any maximal (both-sided) ideal of
An(k) is of the form Ia,b above.

Proof. (1) easy.
(2) Write

f =
∑

I,J

fIJξ
IηJ

and compute [ξi, f ] and [ηj , f ] term by term.
(3)

An(k) =
⊕

0≤i1,...,in,j1,...,jn≤p−1

Zn(k)ξi1
1 ξ

i2
2 ξ

i3
3 . . . ξin

n η
i1
1 η

i2
2 η

i3
3 . . . ηin

n .

(4) is a direct consequence of Lemma 1. For the reference purposes, we record here
another explanation. By considering a translation in ξ- and η-directions, we may
well assume a = b = 0. Consider an action ofAn(k) onA = k[ξ1, . . . , ξn]/(ξp

1 , . . . , ξ
p
n)

defined by the following formula.

(2) P.f = P (ξ1, . . . , ξn, ∂1, . . . , ∂n).f

We may then verify that this gives a well-defined action of An(k)/I0,0 on the pn-
dimensional vector space A.

If an element P in An(k)/I0,0 satisfy

P.1 = 0, P.ξ = 0, . . . , P.ξp−1 = 0

then we may easily see that P = 0. This means the homomorphism

π0,0 : An(k)/I0,0 → Endk -module(A)

is injective. A dimension argument now shows that π0,0 is a bijection.

(5) Let M be an ideal of An(k). We consider a sheaf ˜(An(k)/M) of algebras on
Spec(Zn(k)) which corresponds to the Zn(k)-module An(k)/M . Since An(k) is a
finitely generated module over a polynomial ring Zn(k), There exists a closed point

m of Zn(k) such that fiber ( ˜(An(k)/M)|m) = An(k)/(M + mAn(k)) is nonzero.
Since M is maximal, this implies that m ⊂ M . The rest of the proof is easy (Use
Nullstellensatz.)
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3.3. Algebra endomorphisms and centers of Weyl algebras.

Lemma 4. Let k be a field of characteristic p > 0. For any k-algebra endomorphism
φ of An(k),

(1) πa,b ◦ φ is a surjective homomorphism for all (a, b) ∈ k2n.
(2) φ(Zn(k)) ⊂ Zn(k).

Proof. We may assume that k is an algebraically closed field.
(1) The kernel of πa,b◦φ is an ideal ofAn(k) and therefore, by a dimension argument,
is one of the maximal ideals of An(k). It also follows that πa,b ◦ φ is surjective.
(2) The result (1) implies that for any (a, b) ∈ k2n we have

φ(Zn(k)) ⊂ Ia,b + k

Thus the claim deduces to the following sublemma.

Sublemma 1.
⋂

(a,b)∈k2n

(Ia,b + k) = Zn(k)

[proof of sublemma]

The left hand side may be identified with a section of Ãn(k) which reduces to 0

at each k-valued point when we regard it as a section of ˜(An(k)/Zn(k)). Since k is
an infinite field, this implies that f ∈ Zn(k).

Corollary 1. An(k) is generated by φ(An(k)) and Z(An(k)).

[proof] We may assume k is algebraically closed. Let B be the algebra generated
by φ(An(k)) and Z(An(k)). Then the claim (1) of the previous lemma shows that
for any maximal ideal m of Z(An(k)), we have an isomorphism

B/mB ∼= An(k)/mAn(k).

as Z(An(k))-modules. Since An(k) is finitely generated module over Z(An(k)), we
see immediately that M = An(k) as required.

Corollary 2. Let An(k) be a copy of An(k). Let φ : An(k) → An(k) be a k-

homomorphism. Let Zn(k) = Z(An(k)), Zn(k) = Z(An(k)) be the center of the

algebras An(k) An(k), respectively. Then the natural homomorphism

An(k) ⊗
Zn(k)

Zn(k) → An(k)

is an isomorphism.

Proof. By the corollary above we already know that it is surjective. Since both
hand sides are free Zn(k)-modules of rank p2n, and since Zn(k) is an integral
domain, the map is a bijection. [The surjection admits a splitting. Then we consider
determinants.]

�

Corollary 3. An algebra homomorphism φ : An(k) → An(k) is surjective if and
only if its restriction to the center

φ|
Z(An(k))
Z(An(k)) : Z(An(k)) → Z(An(k))

is surjective.
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By the birational case of the Jacobian conjecture (which is already known to be
true), we conclude that

Corollary 4. φ : An(k) → An(k) is bijective if and only if the following three
conditions hold.

(1) ψ = φ|
Z(An(k))
Z(An(k)) : Z(An(k)) → Z(An(k)) is injective.

(2) ψ is birational.
(3) The Jacobian detD(ψ) is a nonzero constant.

3.4. A splitting algebra of An. In this subsection we assume that k is a field
of characteristic p > 0. Let Sn(k) = Zn(k)1/p = k1/p[T1, . . . , Tn, U1, . . . , Un] where
Ti = (ξp

i )1/p, Ui = ((ηi)
p)1/p). It is a splitting algebra of An(k), as the following

lemma tells.

Lemma 5. The algebra An(k) acts on V = ⊕pn

i=1Sn(k). In other words, there exists
a representation Φ of An(k) on V.

Φ(ξi) = µi + Ti, Φ(ηi) = νi + Ui,

where elements µi, νi of Mpn(k) are defined (using notation in Lemma 1) as follows.

µi = 1pi−1 ⊗ µ⊗ 1pn−i, νi = 1pi−1 ⊗ ν ⊗ 1pn−i .

The representation Φ may be extended to the following isomorphism.

Φ : An(k) ⊗Zn(k) Sn(k) ∼= Mpn(Sn(k))

Proof. Put αi = ξi − Ti, βi = ηi − Ui(i = 1, . . . , n). Then it is easy to show that
elements α1, . . . , αn, β1, . . . , βn satisfy the relation of generators of the algebra M

as in Lemma 1.
�

3.5. The quotient field of the Weyl algebra. Let k be a field of characteristic
p > 0. There is a nice “quotient field of the Weyl algebra An(k).

Lemma 6. Let Kn(k) be the quotient field of the center Zn(k) of the Weyl algebra
Zn(k). Then the following statements hold.

(1) Dn(k) = An(k) ⊗Zn(k) Kn(k) is a skew field.

(2) dimKn(k)D = p2n.

(3) Mpn(Ln(k)) may be regarded as a p2n-dimensional vector space over D with
a basis {T IUJ ; ||I||ℓ∞ ≤ p− 1, ||J ||ℓ∞ ≤ p− 1}.

Proof. (1) Dn(k) is a simple algebra with no zero-divisor except for 0. Then we use
Wedderburn’s structure theorem.

(2),(3): we may easily see that

dimKn(k)Dn(k) ≤ p2n, dimDn(k)Mp(Ln(k)) ≤ p2n.

On the other hand we have

dimKn(k)Mp(Ln(k)) = p4n

�
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3.6. definition of reduced trace and reduced norm. From a general theory
of central simple algebra, we have a notion of reduced traces and reduced norms.
(See for example [1] for a theory of reduced norms and reduced traces.)

It may be defined as follows. Dn(k) is a central simple algebra overKn(k). Let Ω
be a splitting field Ω of Dn(k). That means, we have an isomorphism of k-algebras

ι : Dn ⊗Kn(k) Ω ∼= Mpn(Ω).

Then for each element x of Dn, it is known that the trace tr(ι(x)) and the deter-
minant det(ι(x)) actually belongs to Kn and that they do not actually depend on
the choice of the splitting field Ω.

We call them reduced trace and reduced norm of x respectively.
As we already saw in the previous section, Sn(k) is a splitting algebra of An(k).

Thus we see that the quotient field Ln(k) of Sn(k) is one of the splitting field of
Dn(k). We have thus proved that reduced norm and reduced determinant of An(k)
actually lie in Zn(k).

3.7. Algebra endomorphism and splitting of Weyl algebra.

Lemma 7. Let k be a algebraically closed field with characteristic p > 0. Let
φ : An(k) → An(k) be a k-homomorphism, ψ : Zn(k) → Zn(k) its restriction to the
center. Then we have the following.

(1) ψ extends uniquely to a homomorphism

ψ̂ : Sn(k) → Sn(k)

(2) φ extends uniquely to a homomorphism

φ̂ : An(k) ⊗Zn(k) Sn(k) → An(k) ⊗Zn(k) Sn(k)

(3) Under the isomorphism Φ of lemma 5, φ̂ may be identified with a map

Mp(Sn(k)) ∋M(T, U) 7→ G(T, U)M(f(T, U))G(T, U)−1

where G(T, U) is an element of GLp(Sn(k)) and f = aψ : A2n → A2n

is a polynomial map associated to the algebra homomorphism ψ̂. In other
words, we have

Φ(φ(x)) = Gf∗(Φ(x))G−1

Proof. (1): In any commutative integral domain of characteristic p, p-th root of an
element is unique.

(2): For each k-valued point (t, u) of A2n we obtain a homomorphism ψt,u :
Mpn(k) →Mpn(k). In other words, we obtain a morphism

Ǧ : A2n → PGLp .

But since the sheaf cohomology H1(A2n,Gm) (in Zariski topology) is trivial, we
have a lift G of Ǧ and the claim is proved.

Corollary 5 (invariance of trace under algebra endomorphism).

trd(φ(a)) = φ(trd(a))

Lemma 8. The polynomial map f of the lemma above is determined by G(T, U)
uniquely up to an addition of an element of k[T p, Up]. That means, if we have two
f ’s, namely f1 and f2, with the same G(T, U), then we have

f∗
1 (T ) − f∗

2 (T ) ∈ k[T p, Up], f∗
1 (U) − f∗

2 (U) ∈ k[T p, Up]
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Proof. Put α = ξ − T, β = η − U . Then

φ(ξ) − φ(T ) = φ(α) = G(T, U)αG(T, U)−1,(3)

φ(η) − φ(U) = φ(β) = G(T, U)βG(T, U)−1.(4)

φ(ξ), φ(η) ∈ k[ξ, η], φ(T ), φ(U) ∈ k[T, U ].

3.8. the geometric degree.

Definition 1. Let k be a field of positive characteristic. Then for any k-algebra
homomorphism. φ : An(k) → An(k), the geometric degree geomdeg(φ) of φ is
defined to be the index [Q(Zn(k)) : Q(φ(Zn(k))] of the corresponding field extension.

Note that if the geometric degree is finite, then by comparing the transcendent
degree we see that φ is actually injective and the geometric degree is equal to
[Kn(k) : Kn(k)].

3.9. uniqueness of an operator p-th root for generators of An(k).

Lemma 9. If F ∈ An(k) satisfies an identity F p = ξp
1 , then F = ξ1.

Proof. See the principal symbol (highest degree part) of F . Then it should be ξ1.
Thus there exists a constant c such that F = ξ1 + c. On the other hand, we have
(ξ1 + c)p = ξp

1 + cp. �

3.10. Algebra endomorphisms of Weyl algebras are determined by its
restriction to the center. In this subsection we assume that k is a field of positive
char.

Lemma 10. The natural group homomorphism Autk -alg(An(k)) → Autk -alg(Zn(k))

(restriction map) is injective.

Proof. The uniqueness of operator p-th root for generators of Zn. �

Note.
It is not surjective. For example, let k be a field of odd characteristic and consider

an algebra automorphism ψ of Z1(k) given by

ψ(ξp) = ξp, ψ(ηp) = −ηp.

Then by the uniqueness of the operator p-th root we see that the lift φ of ψ should
satisfy

φ(ξ) = ξ, φ(η) = −η.

But this φ is not an algebra homomorphism.

Lemma 11. The restriction map

Endk -alg(An(k)) → Endk -alg(Zn(k))

is injective.

Proof. Let An(k) be a copy of An(k) and consider two k-algebra homomorphisms

φ(1), φ(2) : An(k) → An(k).

Then we have k-algebra isomorphisms

φ(1) ⊗ idZn(k) : An(k) ⊗Zn(k) Zn(k) → An(k)

where Zn(k) is the center of An(k). Since these two isomorphisms coincide on the
center, we deduce from the previous lemma that both maps coincide. �
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4. Reduced trace and reduced norm

In this section we study some properties of reduced trace and reduced norm
defined in subsection3.6.

4.1. calculation of reduced trace.

Lemma 12. The trace of a differential operator ξk(d/dξ)l on a vector space k[ξ]/(ξp)
is non zero if and only if k = l = p− 1.

[proof] If k 6= l then ξi(d/dξ)j is represented by a strictly triangular matrix and
the trace is 0. If k = l, we have

(ξl(d/dξ)l).ξs = s(s− 1) . . . (s− k + 1)ξs.

Summing up this we obtain the result.
�

Corollary 6.

tr((µ+ T )k(ν + U)l) =

{

−T k0pU l0p if k = k0p+ (p− 1), l = l0p+ (p− 1)

0 otherwise

Lemma 13. (1) If 0 ≤ i, j ≤ p− 1, then trd(ξiηj) is an element of k.
(2)

trd(ξiηj) =

{

−1 (if i = j = p− 1)

0 otherwise

A formula for the reduced trace when n > 1 is easily obtained by noting that
An(k) is isomorphic to a tensor product A1(k) ⊗k A1(k) ⊗k · · · ⊗k A1(k) of A1(k)
’s.

Lemma 14. Let k be a field of characteristic p. Let φ be a k-endomorphism of
An(k). Let I, J be an element of {0, 1, 2, . . . , p− 1}n (multi-index). Then for any
f ∈ Z(An(k)), we have

trd(ξIηJf) =

{

−f if I = J = (p− 1, p− 1, . . . , p− 1)

0 otherwise

4.2. invariance of trace and inversion formula.

Lemma 15. Let k be a field of characteristic p. Let φ be a k-endomorphism of
An(k). Let I, J be an element of {0, 1, 2, . . . , p− 1}n (multi-index). Then for any
f ∈ Z(An(k)), we have

trd(φ(ξIηJf)) =

{

−φ(f) if I = J = (p− 1, p− 1, . . . , p− 1)

0 otherwise

Proof. This is the same as Corollary 5. One may also prove this by using Corollary
2.

�

For any index set I ∈ N2n, we denote by Ic the index set (p−1, p−1, . . . , p−1)−I.
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Corollary 7. Let k be a field of characteristic p. Let φ be a k-endomorphism
of An(k). Assume we are given a set of p2n elements {fIJ ∈ Z(An(k)); I, J ⊂
{0, 1, 2, . . . , p − 1}n}. Let M be the maximum of total degree of φ(ξ1), . . . , φ(ξn),
φ(η1), . . . , φ(ηn). Then for any set {fIJ} of p2n elements of Z(An(k)), we have

totaldeg(φ(
∑

I,J

fIJξ
IηJ )) ≥ max

I,J
(totaldeg φ(fIJ )) −Mp2n

Proof. Put F = φ(
∑

I,J fIJξ
IηJ ). Then

trdFφ(η)Jc

φ(ξ)Ic

= fIJ

Thus totaldeg(Fφ(η)Jc

φ(ξ)Ic

) ≥ totaldeg(fIJ). Noting that total degree is additive
(totaldeg(FG) = totaldeg(F ) + totaldeg(G)), we complete the proof.

�

Proposition 1 (inversion formula). Let k be a field of characteristic p. Assume we

have an injective algebra endomorphism φ of An(k). We use the notation ξi = φ(ξi),
ηj = φ(ηj). Then for any element x ∈ An(k), we have

x = −
∑

I,J

trd(xηJc

ξ
Ic

)ξ
I
ηJ

Corollary 8. Under the assumption of the Lemma above, if elements trd(ξiη
Jc

ξ
Ic

),

trd(ηiη
Jc

ξ
Ic

) (i = 1, . . . , n) are all constants, then φ is invertible.

5. injectivity (n = 1)

5.1. comments on this section. When characteristic of a field k is 0, then we
know that An(k) is simple and that any algebra endomorphism is injective. Even if
the characteristic of k is nonzero, all examples of algebra endomorphisms of An(k)
author knows are injective.

In this section we prove this is true for n = 1 case.

5.2. injectivity(n = 1).

Lemma 16. φ : An(k) → An(k) be a k-homomorphism. Then trans.deg(φ(ξp
1 ), . . . , φ(ξp

n))
is equal to n.

[proof] We may assume that k is algebraically closed. The field k(ξ1, . . . , ξn) has n
linearly independent k-derivations {ad(ηi)}

n
i=1. Since k(ξ1, . . . , ξn) is separable over

k, its transcendent degree is equal to the number of linear independent derivations
[3, Theorem 4.4.2.]. Thus we conclude that transcendent degree of k(ξ1, . . . , ξn)
is no less than (hence is equal to) n. That means, ξ1, . . . , ξn are algebraically
independent over k.

Lemma 17 (n = 1). Any k-algebra endomorphism φ : A1(k) → A1(k) is injective.

[proof] We may assume that the base field k is algebraically closed. φ(A1(k)) has
no zero-divisor except for 0. Thus

φ(A1(k)) ⊗φ(Z(A1(k)) Q(φ(Z(A1(k)))

is a skew field which is of finite rank over Q(φ(Z(A1(k)))). If the transcendent
degree of the fieldK is 1, then it contradicts with Tsen’s theorem. Thus φ(ξp), φ(ηp)
are algebraically independent over k.

�
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6. multidegree monoids and lattices

For any element f =
∑

I,J fIJξ
IηJ ∈ An(k), we denote by multideg(f) the

multidegree of f . That means,

multideg(f) = max{(I, J) ∈ N2n; fIJ 6= 0},

where we employ the lexicographic order on N2n. For any subalgebra A of An(k),
we define its multidegree monoid multideg(A) as follows.

multideg(A) = {multideg(f); f ∈ A}.

It is a sub monoid of N2n. We use several norms for indices in N2n. Among them
is the “ℓ1-norm” |t1| + · · · + |t2n|. of (t1, . . . , t2n) The total degree totaldeg(f) of
an element f of An(k) is then defined to be the ℓ1-norm of multideg(f). By a total
degree of a derivation or an algebra endomorphism of An(k) we mean the maximum
of the total degree of the image of the standard generators ξ1, . . . , ξn, η1, . . . , ηn.

Definition 2. For any subset S of N2n, we denote by S≤d the set of all elements
of S whose ℓ1-norms are less than or equal to d. We denote by aHF ”the affine
Hilbert function” of S, that is,

aHFS(i) = #(S≤i) (i ∈ N)

For any subalgebra A of An(k), we define its affine Hilbert function aHFA as the
affine Hilbert function aHFmultideg A of multidegree of A.

Lemma 18. Let m be a positive integer. Let S be a sub monoid of Nm. Let
L = ZS be the submodule of Zn generated by S. Then the following conditions are
equivalent.

(1) There exists a positive real number ǫ such that aHFS(i) ≥ ǫim for all i >> 0.
(2) rank(L) = m

Proof. (2) =⇒ (1): Take I1, I2, . . . , Im ∈ S which are linearly independent over
Q. Put c = max(||I1||ℓ1 , ||I2||ℓ1 , . . . , ||In||ℓ1). Then a map α defined by

α : Nm ∋ (a1, . . . , am) 7→ a1I1 + a2I2 + · · · + amIm ∈ S

is injective and satisfies α(Nm
≤d) ⊂ S≤cd for every positive integer d. Thus we have

aHFS(d) ≥

(

m+ [d/c]

m

)

≥
dm

(c+ 1)mm!

when d is large enough. ([•] denotes the Gaussian symbol.)
(1) =⇒ (2): Assume on the contrary that r = rank(L) < m. Then the module

L, being torsion free, is isomorphic to Zr. Let I1, . . . , Ir be elements of S which
forms a Z-basis of L. Then a map

β : Rr ∋ (t1, t2, . . . , tr) 7→ (t1I1 + t2I2 + · · · + trIr) ∈ Rm

is an injective linear map from Rr to Rm. Thus we may easily see that there exists
a real number M such that

||

r
∑

i=1

tiIi||ℓ1 < 1 =⇒ ||(t1, . . . , tr)||ℓ1 < M

This implies that #S<d is smaller than the number of elements of Zr which are
shorter (in ℓ1-norm) than Md. �
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6.1. injectivity for almost all primes.

Lemma 19. Let k be a field. Assume φ : An(k) → An(k) is injective (which is
always the case if chark = 0). Then rank(Z multideg(φ(An(k))) = 2n.

Proof. LetN be the maximum of total degrees of elements φ(ξ1), . . . , φ(ξn), φ(η1), . . . , φ(ηn).
Then we see that

φ(An(k)≤i) ⊂ An(k)≤Ni

holds for any i > 0. Thus for any i > 0, we have

aHFφ(An(k))(Ni) ≥
aHFAn(k)(i) =

(

i+ 2n

i

)

.

This together with Lemma 18 gives the result. �

Lemma 20. Let A be a subalgebra of a polynomial algebra P = k[X1, X2, . . . , Xm]
over a field k. If there exists an positive integer c such that

dim(A≤d) ≥
1

cm!
dm

holds for all integers d > 0, then we have

[Q(P ) : Q(A)] ≤ c

Proof. Suppose on the contrary that [Q(P ) : Q(A)] > c. Take elements f1, . . . , fc+1 ∈
Q(P ) which are linearly independent over Q(A). By multiplying a “common de-
nominator”, we may assume that fi are elements of P . Then it follows that the
sum

f1A+ f2A+ · · · + fc+1A

is direct in P . Let M be the maximum of total degrees of f1, . . . , fc+1. Then the
directness above implies that an inequality

dim ((f1A+ f2A+ · · · + fc+1A)≤d) ≥ (c+ 1) dimA≤(d−M)

holds for any integer d > M . Since the left hand side is not greater than dimP≤d,
we obtain the following inequation

dm

m!
+O(dm−1) ≥ (c+ 1)

1

cm!
(d−M)m

which leads to a contradiction when d is large enough. �

Proposition 2 (injectivity for almost all primes). Let K be an algebraic number
field, O = O(K) be the ring of integers in K. suppose we are given an K-algebra
endomorphism φ of An(K).

Then the multidegree monoid of the image Image(φ) has rank 2n. Furthermore,
for almost all prime ideals p of O, we have the following facts.

(1) φ induces an k(p)-algebra endomorphism φp of An(k(p)) (where k(p) = O/p
is the residue field of p).

(2) The multidegree monoid of the image Image(φp) has rank 2n.
(3) φp is injective.
(4) There exists a constant C such that geomdeg(φp) ≤ C for all p.
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Proof. The first statement is an easy consequence of Lemma 19. This in turn
implies (2) (except for finite primes). In precise, let x1, x2, . . . , xn be elements in
An(K) such that multi degrees of φ(x1), φ(x2), . . . , φ(x2n) are linearly independent.
Then for almost all primes, their reductions x1, x2, . . . , xn are defined as elements
of An(k(p)) and their multi degrees stays invariant under the reduction.

We apply Lemma 18 to see that there exists a positive real number ǫ which is
independent of p such that an inequality

dim(φp(An(k))≤s) ≥ ǫs2n

holds for any large integer s.
(1) is already proved in subsection 3.1. To prove (4), we denote by k = k(p)

the quotient field with characteristic p(> 0). Since An(k) is a free Zn(k)-module of
rank 2n with generators {ξIηJ ; ||I||ℓ∞ , ||J ||ℓ∞ ≤ p− 1}, we have

φp(Zn(k)) · (
∑

||I||ℓ∞ ,||J||ℓ∞≤p−1

kφp(ξ)
Iφp(η)

J ) = φp(An(k)).

Then Corollary 7 gives us an relationship of total degrees of both hands sides.
Namely, there exists a positive number N such that

φp(Zn(k))≤s+N · (
∑

||I||ℓ∞ ,||J||ℓ∞≤p−1

kφp(ξ)Iφp(η)J ) ⊃ φp(An(k))≤s

holds for any positive integer s.
Combining these, we obtain

dim(φp(Zn(k))≤s+N )p2n ≥ ǫs2n

Then we use Lemma20 to see that (4) is true. (One should be very careful about
grading of Zn(k) here. degrees of generators ξp

i , η
p
i of Zn(k) are all p. not 1.) (3)

follows from (4) and a consideration on transcendence degrees.
�
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