\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

No.8: The ring of *p*-adic Witt vectors revisited

Temporarary summary of our definitions and results

$$\star \Lambda(A) = 1 + TA[[T]].$$

- $\star (f)_W + (g)_W = (fg)_W.$
- $\star [c] \stackrel{\text{def}}{=} (1 cT).$
- $\star [c].(f)_W = (f(cT))_W.$
- $\star V_n((f)_W) = (f(T^n))_W.$
- \star Every element x of $\Lambda(A)$ may be uniquely written as

$$x = \sum_{j=1}^{\infty} V_j[x_j] \qquad (\{x_j\} \in A^{\mathbb{Z}_{>0}})$$

 $\circ \{x_j\} \text{ is called the Witt component of } x.$ $\star [x] + [y] = \sum_j V_j[\alpha_j(x, y)]$ $\circ \{\alpha_j\} \text{ is the Witt component of } [x] + [y] =$ $(1 - (x + y)T + xy)T^2)_W = (1 - uT + vT^2)_W = \sum_{j=1}^{\infty} V_j[\alpha_j(x, y)].$ $\circ \alpha_1 = u, \alpha_2 = -v, \alpha_3 = -uv, \alpha_4 = -u^2v, \alpha_5 = uv^2 - u^3v, \dots$ $\star V_n[x] + V_n[y] = \sum_{j=1}^{\infty} V_n[\alpha_j(x, y)]$ $\star V_n[x] \cdot V_m[y] = d \cdot V_l[x^{m'}y^{n'}]$ $(d = \gcd(n, m), n = n'd, m = m'd, l = \operatorname{lcm}(n, m))$

For any element x of $\Lambda(A)$, we consider the (set-theoretic) support support(x) of the Witt component $\{x_j\}$ of x.

$$support(x) = \{j; x_j \neq 0\}$$

* $x \in Image(V_n) \iff support(x) \in n\mathbb{Z}$
* $x \in I_{(p)} \iff support(x) \in \bigcup_{q \in S_p} q\mathbb{Z}$ $(S_p = \{q : \text{ prime }, q \neq p\}.$

We put $P = \{1, p, p^2, p^3, ..., \}$. By results of unique factorization, we see:

$$\mathbb{Z}_{>0} = \left(\cup_{q \in S_p} q \mathbb{Z}_{>0}\right) \prod P$$

We put $\Lambda^{(p)}(A) = \Lambda(A)/I_{(p)}$. We have:

PROPOSITION 8.1. Let p be a prime number. Let A be a ring of characteristic. Then:

(1) Every element of $\Lambda^{(p)}(A)$ is written uniquely as

$$\sum_{j=0}^{\infty} V_p^j([x_j]) \qquad (x_j \in A).$$

(2) For any $x, y \in A$, we have

$$V_p^n([x]) \cdot V_p^m([y]) = V_p^{n+m}([x^{p^m}y^{p^n}]).$$

(3) A map

$$\varphi: \Lambda^{(p)}(A) \ni \sum_{j=0}^{\infty} V_p^n([x_j]) \mapsto x_0 \in A$$

is a ring homomorphism from $(\Lambda^{(p)}, +, \cdot)$ to $(A, +, \times)$.

 \mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

- (4) $\operatorname{Ker}(\varphi) = \operatorname{Image}(V_p).$
- (5) An element $x \in \Lambda^{(p)}$ is invertible in $\Lambda^{(p)}$ if and only if $\varphi(x)$ is invertible in A.

COROLLARY 8.2. If k is a field of characteristic $p \neq 0$, then $\Lambda^{(p)}$ is a local ring with the residue field k. If furthermore the field k is **perfect** (that means, every element of k has a p-th root in k), then every non-zero element of $\Lambda^{(p)}$ may be writen as

 $p^k \cdot x$ $(k \in \mathbb{N}, x \in (\Lambda^{(p)})^{\cdot}$ (i.e. x:invertible))

Since any integral domain can be embedded into a perfect field, we deduce the following

COROLLARY 8.3. Let A be an integral domain of characteristic $p \neq 0$. Then $\Lambda^{(p)}(A)$ is an integral domain of characteristic 0.

PROOF. $\Lambda^{(p)}(\iota)$ is always an injection when ι is.