$ \mathbb{Z}_p$, $ \mathbb{Q}_p$, and the ring of Witt vectors

No.04: \fbox{$\mathbb {Z}_p$\ as a local ring.}

In this lecture, rings are assumed to be unital, associative and commutative unless otherwise specified.

DEFINITION 04.1   A (unital commutative) ring $ A$ is said to be a local ring if it has only one maximal ideal.

LEMMA 04.2   Let $ A$ be a ring. Then the following conditions are equivalent:
  1. $ A$ is a local ring.
  2. $ A\setminus A^\times$ forms an ideal of $ A$.

PROPOSITION 04.3   $ \mathbb{Z}_p$ is a local ring. Its maximal ideal is equal to $ p \mathbb{Z}_p$.

We may do some “analysis” such as Newton's method to obtain some solution to algebraic equations.

Newton's method for approximating a solution of algebraic equation.

Let us solve an equation

$\displaystyle x^2=2
$

in $ \mathbb{Z}_7$. We first note that

% latex2html id marker 852
$\displaystyle 3^2\equiv 2\quad (7)
$

hold. So let us put $ x_0=3=[0.3]_7$ as the first approximation of the solution. The Newton method tells us that for an approximation $ x$ of the equation $ x^2=2$, a number $ x'$ calculated as

$\displaystyle x'=\frac{1}{2}(x+ \frac{2}{x})
$

gives a better approximation.

$\displaystyle x_0'=\frac{1}{2}([0.3]_7+[0.3\dot{2}]_7=[0.3\dot{1}]_7
$

So $ [0.3\dot{1}]_7$ is a better approximation of the solution. In order to make the calculation easier, let us choose $ x_1=[0.31]_7$ (insted of $ x_0'$) as a second approximation.

% latex2html id marker 872
$\displaystyle x_1'
=\frac{1}{2}([0.31]_7+2/[0.31]_7)
=\frac{1}{2}([0.31]_7+[0.3\dot{1}45\dot{2}]_7)\fallingdotseq [0.312]_7
$

We choose $ x_2=[0.312]_7$ as a second approximation.

% latex2html id marker 876
$\displaystyle x_2'
=\frac{1}{2}([0.312]_7+2/[0.3\dot{1}2534066\dot{2}]_7)\fallingdotseq
[0.31261]_7
$

We choose $ x_3=[0.31261]_7$ as a third approximation.

% latex2html id marker 880
$\displaystyle x_3'
=
=\frac{1}{2}([0.31261]_7+[0.3126142465066\dots]_7)\fallingdotseq
[0.312612124...]_7
$

We choose $ x_4=[0.312612124]_7$ as a third approximation.

    $\displaystyle x_4'$ $\displaystyle =\frac{1}{2}([0.312612124]_7+[0.312612124565220422662213135351\dots]_7)$
      % latex2html id marker 885
$\displaystyle \fallingdotseq [0.3126121246621102]_7$

EXERCISE 04.1   Compute $ [0.5]_7/[0.11]_7$

EXERCISE 04.2   Find a solution to

% latex2html id marker 899
$\displaystyle x^3\equiv 5 \pmod {11^5}
$

such that % latex2html id marker 901
$ x \equiv 3 \pmod {11}$.

\fbox{$\mathbb {Q}_p$\ }

DEFINITION 04.4   We denote by $ \mathbb{Q}_p$ the quotient field of $ \mathbb{Z}_p$.

LEMMA 04.5   Every non zero element $ x \in\mathbb{Q}_p$ is uniquely expressed as

% latex2html id marker 920
$\displaystyle x= p^k u \qquad( k\in \mathbb{Z}, u \in \mathbb{Q}_p^\times).
$

We have so far constructed a ring $ \mathbb{Z}_p$ and a field $ \mathbb{Q}_p$ for each prime $ p$.

PROPOSITION 04.6   Let $ p$ be a prime. Then:
  1. $ \mathbb{Z}_p$ is a local ring with the unique maximal ideal $ p \mathbb{Z}_p$.
  2. $\displaystyle \mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p (=\mathbb{Z}/p \mathbb{Z}).
$

  3. $ \mathbb{Z}_p$ is an integral domain whose quotient field $ \mathbb{Q}_p$ is a field of characteristic zero.

With $ \mathbb{Q}_p$ and/or $ \mathbb{Z}_p$, we may do some “calculus” such as:

THEOREM 04.7   [#!Serre2!#, corollary 1 of theorem 1] Let $ f\in \mathbb{Z}_p[X_1,X_2,\dots,X_m], x\in \mathbb{Z}_p^m$ , $ n,k\in \mathbb{Z}$. Assume that there exists a natural number $ j$ such that % latex2html id marker 960
$ 1\leq j \leq m$,

% latex2html id marker 962
$\displaystyle \frac{\partial f}{\partial X_j} (x)\not \equiv 0 \pmod p.
$

Then there exists $ y\in \mathbb{Z}_p^m $ such that

(1)   $\displaystyle f(y)=0$
(2)   % latex2html id marker 966
$\displaystyle y\equiv x \pmod p$

See [#!Serre2!#] for details.