Congruent zeta functions. No.12

Yoshifumi Tsuchimoto

In this lecture we make use of a scheme $ X$ of finite type over $ \mathbb{Z}$, It is a patchwork of affine schemes of finite type over $ \mathbb{Z}$,

An affine scheme $ X$ of finite type over $ \mathbb{Z}$, in turn, is related to a set $ f_1,\dots f_m$ of polynomial equations of coefficients in $ \mathbb{Z}$, and is written as $ \operatorname{Spec}(A)$ for a ring $ A=\mathbb{Z}[X_1,\dots X_n]/(f_1,\dots f_m)$ of finite type over $ \mathbb{Z}$, We consider quasi coherent sheaves over these objects. When $ X$ is affine ( $ X=\operatorname{Spec}(A)$), the category of quasi coherent sheaves over $ X$ is equivalent to the category of $ A$-modules.

For any scheme $ X$ of finite type over $ \mathbb{Z}$, we put

$\displaystyle \zeta(X,s)=\prod_{x \in \operatorname{Spm}(X)} (1-(Nx)^{-s})^{-1}
$

It is equal to the zeta function of the category of quasi coherent sheaves on $ X$.

Recall we have defined the congruent zeta function as

% latex2html id marker 771
$\displaystyle Z(X,t)=\exp( \sum_{m=1}^\infty \frac{\char93  X(\mathbb{F}_{q^m}) }{m}t^m).
$

PROPOSITION 12.1   Let $ X$ be a scheme of finite type over % latex2html id marker 780
$ \mathbb{F}_q$. Then we have

% latex2html id marker 782
$\displaystyle \zeta(X,s)=Z(X,q^{-s}).
$

PROOF..

      $\displaystyle \log(\zeta(X,s))$
    $\displaystyle =$ $\displaystyle -\sum_{\mathfrak{m} \in \operatorname{Spm}(X)} \log(1-N(\mathfrak{m})^{-s})$
    $\displaystyle =$ $\displaystyle \sum_{\mathfrak{m}} \sum_{r=1}^\infty \frac{N(\mathfrak{m})^{-rs} }{r}$
    $\displaystyle =$ % latex2html id marker 792
$\displaystyle \sum_{u=1}^\infty \sum_ {\substack{\m...
...hfrak{m} : \mathbb{F}_q]=u}} \sum_{r=1}^\infty \frac{N(\mathfrak{m})^{-rs} }{r}$
    $\displaystyle =$ % latex2html id marker 794
$\displaystyle \sum_{u=1}^\infty \frac{\char93 X(\mathbb{F}_{q^u})_*}{u} \sum_{r=1}^\infty \frac{q^{-urs}}{r}=(\heartsuit).$

where we put

% latex2html id marker 796
$\displaystyle X(\mathbb{F}_{q^u})_*=
X(\mathbb{F}_{q^u})
\setminus
\cup _{t<u}(X(\mathbb{F}_{q^t})).
$

Now let us put % latex2html id marker 798
$ t=q^{-s}$ and proceed further.

    $\displaystyle (\heartsuit)$ % latex2html id marker 800
$\displaystyle = \sum_{u=1}^\infty \sum_{r=1}^\infty \frac{\char93  X(\mathbb{F}_{q^u})_*}{ur} t^{ur}$
      % latex2html id marker 801
$\displaystyle =\sum_m \frac{t^m}{m} \sum_{ur=m} \char93  X(\mathbb{F}_{q^u})_*$
      % latex2html id marker 802
$\displaystyle = \sum_m \frac{t^m}{m}\char93  X(\mathbb{F}_{q^m})$
      $\displaystyle =-\log(Z(X,t))$

% latex2html id marker 784
$ \qedsymbol$

PROPOSITION 12.2   Let $ X$ be a scheme of finite type over $ \mathbb{Z}$. then we have

$\displaystyle \zeta(X,s)=\prod_{p:{\rm { prime}}}\zeta((X \mod p),s).
$

Where we define $ X\mod p$ as a fiber product $ X \times_{\operatorname{Spec}\mathbb{Z}} {\operatorname{Spec}\mathbb{F}_p}$.

LEMMA 12.3  

% latex2html id marker 825
$\displaystyle Z(X\times \mathbb{A}^1,t)=Z(X,qt).
$