Congruent zeta as a zeta of a dynamical system

The definition of Artin Mazur zeta function is valid without assuming the number of the base space $ M$ to be a finite set.

DEFINITION 11.7   Let $ M$ be a set. Let $ f: M\to M$ be a map such that $ \char93 {\mathrm{Fix}}(f^n)$ is finite for any $ n>0$. We define the Artin-Mazur zeta function of a dynamical system $ (M,f)$ as

$\displaystyle Z((M,f),T)=
\exp(\sum_{j=1}^\infty \frac{\char93  {\mathrm{Fix}}(f^j) T^j}{j})
$

Let % latex2html id marker 938
$ q$ be a power of a prime $ p$. We may consider an automorphism % latex2html id marker 942
$ {\mathrm{Frob}}_q $ of % latex2html id marker 944
$ \bar{\mathbb{F}_{q}}$ over % latex2html id marker 946
$ \mathbb{F}_q$ by

% latex2html id marker 948
$\displaystyle {\mathrm{Frob}}_q(x)=x^q
$

PROPOSITION 11.8   % latex2html id marker 955
$ {\mathrm{Frob}}_q: \mathbb{F}_{q^r}\to \mathbb{F}_{q^r}$ is an automorphism of order $ r$. It is a generator of the Galois group % latex2html id marker 959
$ {\mathrm{Gal}}(\mathbb{F}_{q^r}/\mathbb{F}_q)$.

For any projective variety $ X$ defined over % latex2html id marker 963
$ \mathbb{F}_q$, we may define a Frobenius action % latex2html id marker 965
$ {\mathrm{Frob}}_q$ on % latex2html id marker 967
$ X(\bar{\mathbb{F}_q})$:

% latex2html id marker 969
$\displaystyle {\mathrm{Frob}}_q([x_0:x_1:\dots x_N])
=
([x_0^q:x_1^q:\dots x_N^q]).
$

For any % latex2html id marker 971
$ \bar{\mathbb{F}_q}$-valued point % latex2html id marker 973
$ x \in X(\bar{\mathbb{F}_q})$, We have

% latex2html id marker 975
$\displaystyle {\mathrm{Frob}}_q^r(x)=x \iff x \in X(\mathbb{F}_{q^r}).
$

PROPOSITION 11.9   The Artin Mazur zeta function of the dynamical system % latex2html id marker 982
$ (X(\bar{\mathbb{F}_q}),{\mathrm{Frob}}_q)$ conincides with the congruent zeta function % latex2html id marker 984
$ Z(X/\mathbb{F}_q,t)$.