Jacobi symbol

DEFINITION 7.1   Let $ m$ be a positive odd integer. Let us factor $ m$:

$\displaystyle m=\prod_i p_i^{e_i}
$

where $ p_i$ are primes. Then for any $ n\in \mathbb{Z}$, we define Jacobi symbols as follows

$\displaystyle {\left(\frac{n}{m}\right)}=
\prod_i{\left(\frac{n}{p_i}\right)}^{e_i}
$

We further define

$\displaystyle {\left(\frac{a}{p}\right)}= 0$$\displaystyle \text { if } a \in p\mathbb{Z}.
$

THEOREM 7.2 (quadratic reciprocity theorem)   For any positive odd integers $ n,m$, we have

$\displaystyle \left(\frac{m}{n}\right)
\left(\frac{n}{m}\right)
=(-1)^{(m-1)(n-1)/4}.
$

THEOREM 7.3   Let $ n$ be a postive odd integer. Then:

  1. $ {\left(\frac{-1}{m}\right)}=(-1)^{(m-1)/2} $.
  2. $ {\left(\frac{2}{m}\right)}=(-1)^{(m^2-1)/8} $.

EXERCISE 7.1   $ p=113357$ is a prime. (You may use the fact without proving it.) Is there any integer $ n$ such that

$\displaystyle n^2=11351$    in $\displaystyle \mathbb{Z}/p \mathbb{Z}$$\displaystyle \text { ?}
$

If so, can you find such $ n$?

A litte appendix. (The following is borrowed from Wikipedia(“Riemann zeta function”,Japanese version,May 2019))

$\displaystyle \zeta(s)=\sum_{s=1}^\infty \frac{1}{n^s}=\prod (1-\frac{1}{p^s})^{-1}
$

    $\displaystyle \log(\zeta(s))$ $\displaystyle = -\sum_p \log(1-\frac{1}{p^s} )$
      $\displaystyle = \sum_{p} \sum_{n=1}^\infty \frac{1}{n p^{ns}}$
      $\displaystyle = \sum_{p} \sum_{n=1}^\infty \frac{1}{n p^{ns}}$
      $\displaystyle = s \sum_{n=1}^\infty \frac{1}{n} \sum_p \int_{p^n}^\infty x^{-s-1} dx$
      % latex2html id marker 728
$\displaystyle = s \sum_{n=1}^\infty \frac{1}{n} \int_{1}^\infty (\sum_p [? p\leq x^{1/n}]) x^{-s-1} dx$
      $\displaystyle = s \sum_{n=1}^\infty \frac{1}{n} \int_{1}^\infty \pi(x^{1/n}) x^{-s-1} dx$
      $\displaystyle = \int_1^\infty \Pi(x) x^{-s-1} dx$

here we have put

% latex2html id marker 732
$\displaystyle \pi(x)=\char93 \{p; p\leq x\} , \qquad
\Pi(x)=\sum_{n=1}^\infty \frac{1}{n} \pi (x^{1/n}).
$

Note also that we have used $ \frac{1}{p^{ns}}=s\int_{p^n}^\infty {x^{-s-1}} dx .
$