Legendre symbol

DEFINITION 6.1   Let $ p$ be an odd prime. Let $ a$ be an integer which is not divisible by $ p$. Then we define the Legendre symbol $ \left(\frac{a}{p}\right)$ by the following formula.

\begin{displaymath}
{\left(\frac{a}{p}\right)}=
\begin{cases}1 & \text{if }(X^2...
...ucible over }\mathbb{F}_p\\
-1 & \text{otherwise}
\end{cases}\end{displaymath}

We further define

$\displaystyle {\left(\frac{a}{p}\right)}= 0$$\displaystyle \text { if } a \in p\mathbb{Z}.
$

LEMMA 6.2   Let $ p$ be an odd prime. Then:
  1. $ {\left(\frac{a}{p}\right)}= a^{(p-1)/2} \mod p $
  2. $ {\left(\frac{ab}{p}\right)}= {\left(\frac{a}{p}\right)}
{\left(\frac{b}{p}\right)} $

We note in particular that $ {\left(\frac{-1}{p}\right)}=(-1)^{(p-1)/2} $.

DEFINITION 6.3   Let $ p,\ell$ be distinct odd primes. Let $ \lambda$ be a primitive $ \ell$-th root of unity in an extension field of $ {\mathbb{F}}_p$. Then for any integer $ a$, we define a Gauss sum $ \tau_a$ as follows.

$\displaystyle \tau_a=\sum_{t=1}^{\ell-1}{\left(\frac{t}{\ell}\right)}\lambda^{at}
$

$ \tau_1$ is simply denoted as $ \tau$.

LEMMA 6.4  
  1. $ \tau_a={\left(\frac{a}{\ell}\right)}\tau$.
  2. $ \sum_{a=0}^{l-1} \tau_a \tau_{-a}=\ell(\ell-1)$.
  3. $ \tau^2=(-1)^{(\ell-1)/2}\ell$ ( $ =\ell^*$ (say)).
  4. $ \tau^{p-1}=(\ell^*)^{(p-1)/2}$.
  5. $ \tau^p=\tau_{p}$.

THEOREM 6.5   $ {\left(\frac{p}{\ell}\right)}={\left(\frac{\ell^*}{p}\right)} $ ( where $ \ell^*=(-1)^{(\ell-1)/2}\ell$ ) $ {\left(\frac{-1}{\ell}\right)}=(-1)^{(\ell-1)/2} $ $ {\left(\frac{2}{\ell}\right)}=(-1)^{(\ell^2-1)/8} $


$ p$-dependence of zeta functions is important topic. We are not going to talk about that in too much detail but let us explain a little bit.

Let us define the zeta function of a category $ \mathcal{C}$ [1].

$\displaystyle \zeta(s,\mathcal{C})=\prod_{P\in P(\mathcal{C})} (1-N(P)^{-s})^{-1}
$

where $ P$ runs over all finite simple objects.

For any commutative ring $ A$, an $ A$-module $ M$ is simple if and only if $ M\cong A/\mathfrak{m}$ for some maximal idea $ \mathfrak{m}$ of $ A$. We have thus:

    $\displaystyle \zeta(s,(A\operatorname{-modules})) =$ $\displaystyle \prod_{\substack{\mathfrak{m} \in \operatorname{Spm}(A)\\ \char93 (A/\mathfrak{m})<\infty }} (1-\char93 (A/\mathfrak{m})^{-s})^{-1}$
    $\displaystyle =$ $\displaystyle \prod_{p:\text{prime}} \prod_ {\substack{\mathfrak{m} \in \operat...
...[A/\mathfrak{m}: \mathbb{F}_p]<\infty }} (1-\char93 (A/\mathfrak{m})^{-s})^{-1}$
    $\displaystyle =$ $\displaystyle \prod_p \prod_ {\substack{\mathfrak{m} \in \operatorname{Spm}(A/p...
...mathfrak{m}: \mathbb{F}_p]<\infty }} (1-\char93 ((A/p)/\mathfrak{m})^{-s})^{-1}$
    $\displaystyle =$ $\displaystyle \prod_p \zeta(s,(A/p)\operatorname{-modules}).$

Let us take a look at the last line. It sais that the zeta is a product of zeta's on $ A/p$. Let us fix a prime number $ p$, put $ \bar A=A/p$, and concentrate on $ \bar A$ to go on further.

    $\displaystyle \zeta(s,(A/p)\operatorname{-modules}) = \prod_ {\substack{\mathfr...
...athfrak{m}: \mathbb{F}_p]<\infty }} (1-\char93 (\bar A/\mathfrak{m})^{-s})^{-1}$

    $\displaystyle Z(\operatorname{Spec}(\bar A)/\mathbb{F}_p,T) =$ $\displaystyle \exp(\sum_{r=1}^\infty(\operatorname{Spec}(\bar A)(\mathbb{F}_{p^r}),T))$
    $\displaystyle =$ $\displaystyle \prod_{\mathfrak{m} \in \operatorname{Spm}(A)} \exp(\sum_{r=1}^\infty(\operatorname{Spec}(\bar A/\mathfrak{m})(\mathbb{F}_{p^r}),T))$

% latex2html id marker 1089
$\displaystyle Z(\mathbb{F}_{q^e}/\mathbb{F}_q,T)
=\exp(\sum_{e\vert r}\frac{e}{r} T^r)
= (1-T^e)^{-1}
$

$\displaystyle \zeta(s,\mathbb{F}_{p^e}\operatorname{-modules})=Z(\operatorname{Spec}(\mathbb{F}_{p^e})/\mathbb{F}_p,p^s)
$

We conclude:

PROPOSITION 6.6   Let $ A$ be a commutative ring. Then:
  1. We have a product formula.

    $\displaystyle \zeta(s,(A\operatorname{-modules}))=\prod_p
\zeta(s,(A/p)\operatorname{-modules})
$

  2. $ \zeta$ is obtained by substituting in the congruent zeta function by .