Next:
About this document ...
Up:
Congruent zeta functions. No.4
Previous:
Definition of congruent Zeta
First properties of congruent Zeta function
Let us first recall an elementary formula
L
EMMA
4
.
2
D
EFINITION
4
.
3
Let
be a ring. We define
as the affine spectrum of the polynomial ring
. For any field (or ring)
over
, we have
P
ROPOSITION
4
.
4
P
ROPOSITION
4
.
5
Let
be affine varieties.
If
for any
,then
.
If
for any
,then:
P
ROPOSITION
4
.
6
Let
be an irreducible polynomial in one variable of degree
. Let us consider
. Then:
E
XERCISE
4
.
3
Describe what happens when we omit the assumption of
being irreducible in Proposition
4.6
.