YOSHIFUMI TSUCHIMOTO

curves (over \mathbb{C})

Let \overline{C} be a curve over \mathbb{C} . A divisor D is a formal finite sum $\sum n_i P_i$ of points P_i on the curve C. For any such divisor, we may consider a sheaf $\mathcal{O}(D)$. We call the sum $\sum_i n_i$ the *degree* of D. It is also referred to as the degree of $\mathcal{O}(D)$.

An O-module \mathcal{F} on C is called *invertible* if it is locally isomorphic to the structure sheaf \mathcal{O} . Any invertible sheaf is actually isomorphic to a sheaf $\mathcal{O}(D)$ for some divisor D.

A divisor $D = \sum n_i P_i$ is called effective if $n_i \ge 0$ for all *i*. For any invertible sheaf \mathcal{F} over *C*, we have a exact sequence

$$0 \to \mathcal{F} \to \mathcal{F}(D) \to \mathcal{F}(D)/\mathcal{F} \to 0.$$
 : exact

We have thus the associated long exact sequence on cohomology:

$$0 \to H^{0}(\mathcal{F}) \to H^{0}(\mathcal{F}(D)) \to H^{0}(\mathcal{F}(D)/\mathcal{F})$$
$$\to H^{1}(\mathcal{F}) \to H^{1}(\mathcal{F}(D)) \to 0.$$

We should also mention the genus g(C) of the curve. It is topologically the "number of holes" of the surface $C(\mathbb{C})$.

THEOREM 10.1 (Riemann-Roch). Let C be a non-singular projective curve over \mathbb{C} . For any invertible sheaf \mathcal{F} on C, we have

$$\dim H^0(\mathcal{F}) - \dim H^1(\mathcal{F}) = 1 - g + \deg(\mathcal{F})$$

We have an important sheaf $\omega = \Omega^1$ on C. For any O-module \mathcal{F} on C, we may consider the sheaf of \mathcal{F} -valued 1-forms $\mathcal{F} \otimes \omega$.

We also note that for any invertible sheaf \mathcal{F} on C, we have its dual \mathcal{F}^{\vee} :

$$\mathcal{O}(D)^{\vee} = \mathcal{O}(-D).$$

THEOREM 10.2 (Serre duality).

$$H^{i}(\mathcal{F})^{\vee} \cong H^{1-i}(\mathcal{F}^{\vee} \otimes \omega)$$

We may understand the situation of the two theorems above by using a "formal version of the Čech cohomology". Namely, for any point Pof C with a local coordinate t such that t(P) = 0, We define formal- $\operatorname{Spec}(\mathbb{C}[[t]])$ as a formal "neighbourhood" of P. C may then be covered as

$$C = C \setminus \{P_1, \dots, P_n\} \cup U = \dot{C} \cup U$$

where U is the union of such formal "neighbourhoods" of P_i 's. One may then mimic the Čech cohomology and obtain a Čech complex. Namely, for any \mathcal{O} -module \mathcal{F} on C, we have a complex

$$\mathfrak{F}(\dot{C}) \oplus \mathfrak{F}(U) \to \mathfrak{F}(\dot{U})$$

whose cohomologies are isomorphic to $H^{\bullet}(X; \mathcal{F})$. If \mathcal{F} is invertible, we have also a residue pairing

$$F(\dot{U}) \times \mathfrak{F}^{\vee}(\dot{U}) \to \mathbb{C}$$

which gives rise to the Serre duality.