next up previous
Next: About this document ...

Algebraic geometry and Ring theory

Yoshifumi Tsuchimoto

Note that a sequence

$\displaystyle 0 \to \mathcal A \to \mathcal B \to \mathcal C \to 0
$

of sheaves of abelian groups is exact if and only if it is exact stalkwise.

PROPOSITION 09.1   Let

$\displaystyle 0 \to \mathcal A \to \mathcal B \to \mathcal C \to 0
$

be an exact sequence of sheaves of abelian groups on a topological space $ X$ . Then:
  1. For any open subset $ U$ of $ X$ , the corresponding sequence

    $\displaystyle 0 \to \mathcal A(U) \to \mathcal B(U) \to \mathcal C(U)
$

    of sections is exact.
  2. $\displaystyle B(U) \to \mathcal C(U)
$

    may not be surjective in general.

In a language of category theory, the global section function

$\displaystyle \Gamma(U,\bullet):$   (Sheaf of abelian groups on $X$)$\displaystyle \to$   (Ab)

is a left exact functior. (But not exact.) To treat it, we employ derived functors.

LEMMA 09.2  
  1. For any ring $ A$ , if an $ A$ -module $ I$ is injective, then the associated sheaf $ \tilde I$ on $ \operatorname{Spec}A$ is injective.
  2. The category ($ A$ -modules) has enough injectives.
  3. For any scheme $ X$ with an affine open covering $ X=\sum_j U_j$ , for any $ \mathcal O_X$ -quasi coherent sheaf $ \mathcal F$ on $ X$ , we have:

    $ \mathcal F$ : injective $ \iff$ $ \mathcal F_{U_j}$ injective for any $ j$ .

DEFINITION 09.3  

$\displaystyle H^i (X, \mathcal F) = R^i\Gamma(X,\mathcal F)
$

THEOREM 09.4 (Serre)   For any affine scheme $ X=\operatorname{Spec}(A)$ and for any quasi coherent $ \mathcal O_X$ -module $ \mathcal F$ on $ X$ , we have

% latex2html id marker 700
$\displaystyle H^i(X,\mathcal F)=0 \qquad ($for $\displaystyle \forall i>0)
$

PROPOSITION 09.5   Let $ X$ be a scheme with an affine open covering $ \mathfrak{U}=\{ U_j\}$ . Then for any quasi coherent $ \mathcal O_X$ -module $ \mathcal F$ on $ X$ , The cohomology $ H^i(X,\mathcal F) $ may be computed by usin the Cech cohomology with respect to $ \mathfrak{U}$ .


next up previous
Next: About this document ...
2017-07-21