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quadratic and cubic curves

Definition 8.1. For any ring A, we define its Krull dimension to
be the maximum of ascending chains of primes in A. Namely,

Krulldim(A) = max{n;A ⊃ pn ) pn−1 ) · · · ) p0}

Definition 8.2. A local ring A = (A,m) is called regular if its Krull
dimension is equal to dimA/m(m/m2)¿

Proposition 8.3. Let k be a field of characterictic 6= 2. Then every
quadratic curve (a curve defined by a homogeneous polynomial of degree
2) in P2 over k is isomorphic to a curve of the form

aX2 + bY 2 + cZ2 = 0. (a, b, c ∈ k).

In particular, every quadratic curve in P2 over R is isomorphic to a
curve X2 + Y 2 = Z2.

Proposition 8.4. Let k be a field of characterictic 6= 2, 3. Then
every cubic curve (a curve defined by a homogeneous polynomial of
degree 3) in P2 over k is isomorphic to a curve of the form

ZY 2 = X3 + pXZ2 + qZ3 (p, q ∈ k).

It should be meaningful to point out:

Proposition 8.5. Let τ be a imaginary number in C. τ defines a
lattice (a discrete subgroup of rank 2 in C) L = Z+τZ. A complex man-
ifold C/L may be embedded to the complex projective plane P2(C) by
the Weierstrass ℘-function ℘(z;L) and its derivative ℘′(z;L). Namely,
a rational map defined by

C ∋ z 7→ [℘(z;L) : ℘′(z;L) : 1] ∈ P2(C)

gives a holomorphic map f : C/L → P2(C). moreover, ℘, ℘′ satisfy a
cubic relation so that f gives an isomorphism of C/Z+ τZ and a cubic
curve in P2(C).


