ALGEBRAIC GEOMETRY AND RING THEORY

YOSHIFUMI TSUCHIMOTO

projective space and projective varieties.

DEFINITION 7.1. Let R be a ring. A polynomial $f(X_0, X_1, \ldots, X_n) \in R[X_0, X_1, \ldots, X_n]$ is said to be **homogenius** of degree d if an equality

$$f(\lambda X_0, \lambda X_1, \dots, \lambda X_n) = \lambda^d f(X_0, X_1, \dots, X_n)$$

holds as a polynomial in n + 2 variables $X_0, X_1, X_2, \ldots, X_n, \lambda$.

DEFINITION 7.2. Let k be a field.

(1) We put

$$\mathbb{P}^{n}(k) = (k^{n+1} \setminus \{0\})/k^{\times}$$

and call it (the set of k-valued points of) the **projective space**. The class of an element (x_0, x_1, \ldots, x_n) in $\mathbb{P}^n(k)$ is denoted by $[x_0: x_1: \cdots: x_n]$.

(2) Let $f_1, f_2, \ldots, f_l \in k[X_0, \ldots, X_n]$ be homogenious polynomials. Then we set

$$V_h(f_1,\ldots,f_l) = \{ [x_0:x_1:x_2:\ldots,x_n]; f_j(x_0,x_1,x_2,\ldots,x_n) = 0 \qquad (j=1,2,3,\ldots,l) \}.$$

and call it (the set of k-valued point of) the **projective variety** defined by $\{f_1, f_2, \ldots, f_l\}$.

(Note that the condition $f_j(x) = 0$ does not depend on the choice of the representative $x \in k^{n+1}$ of $[x] \in \mathbb{P}^n(k)$.)

LEMMA 7.3. We have the following picture of \mathbb{P}^2 .

(1)

$$\mathbb{P}^2 = \mathbb{A}^2 \coprod \mathbb{P}^1.$$

That means, \mathbb{P}^2 is divided into two pieces $\{Z \neq 0\} = \mathbb{C}V_h(Z)$ and $V_h(Z)$.

(2)

$$\mathbb{P}^2 = \mathbb{A}^2 \cup \mathbb{A}^2 \cup \mathbb{A}^2.$$

That means, \mathbb{P}^2 is covered by three "open sets" $\{Z \neq 0\}, \{Y \neq 0\}, \{X \neq 0\}$. Each of them is isomorphic to the plane (that is, the affine space of dimension 2).

7.1. proj.

DEFINITION 7.4. An N-graded ring S is a commutative ring with a direct sum decomposition

$$S = \bigoplus_{i \in \mathbb{N}} S_i \qquad \text{(as a module)}$$

such that $S_i S_j \subset S_{i+j}$ ($\forall i, j \in \mathbb{N}$) holds. We define its irrelevant ideal S_+ as

$$S_+ = \bigoplus_{i>0} S_i$$

YOSHIFUMI TSUCHIMOTO

An element f of S is said to be homogenous if it is an element of $\cup S_i$. An ideal of S is said to be homogeneous if it is generated by homogeneous elements. Homogeneous subalgebras are defined in a same way.

DEFINITION 7.5.

 $\operatorname{Proj}(S) = \{\mathfrak{p}; \mathfrak{p} \text{ is a homogeneous prime ideal of } S, \mathfrak{p} \not\supseteq S_+\}$

For any homogeneous element f of S, we define a subset D_f of $\operatorname{Proj}(S)$ as

$$D_f = \{ \mathfrak{p} \in \operatorname{Proj} S; \mathfrak{p} \notin f \}$$

Proj S has a topology (Zariski topology) which is defined by employing $\{D(f)\}$ as an open base.

PROPOSITION 7.6. For any graded ring S and its homogeneous element f, $S[\frac{1}{f}]$ also carries a structure of graded ring. There is a homeomorphism

$$D_f \sim \operatorname{Spec}(S[\frac{1}{f}])_0).$$

We may define, via these homeo altogether, a locally ringed space structure on $\operatorname{Proj}(S)$.