YOSHIFUMI TSUCHIMOTO

5.1. general localization of a commutative ring. We define a localization of a commutative ring in a more general situation than in subsection ??.

DEFINITION 5.1. Let A be a commutative ring. Let S be its subset. We say that S is multiplicative if

 $\begin{array}{ccc} (1) & 1 \in S \\ (2) & x, y \in S \implies xy \in S \\ \text{holds.} \end{array}$

DEFINITION 5.2. Let S be a multiplicative subset of a commutative ring A. Then we define $A[S^{-1}]$ as

$$A[\{X_s; s \in S\}]/(\{sX_s - 1; s \in S\})$$

where in the above notation X_s is a indeterminate prepared for each element $s \in S$.) We denote by ι_S a canonical map $A \to A[S^{-1}]$.

LEMMA 5.3. Let S be a multiplicative subset of a commutative ring A. Then the ring $B = A[S^{-1}]$ is characterized by the following property:

Let C be a ring, $\varphi : A \to C$ be a ring homomorphism such that $\varphi(s)$ is invertible in C for any $s \in S$. Then there exists a unique ring homomorphism $\psi = \phi[S^{-1}] : B \to C$ such that

$$\varphi = \psi \circ \iota_S$$

holds.

COROLLARY 5.4. Let S be a multiplicative subset of a commutative ring A. Let I be an ideal of A given by

 $I = \{x \in I; \exists s \in S \text{ such that } sx = 0\}$

Then (1) I is an ideal of A. Let us put $\overline{A} = A/I$, $\pi : A \to \overline{A}$ the canonical projection. Then:

(2) S
= π(S) is multiplicatively closed.
(3) We have

$$A[S^{-1}] \cong \bar{A}[\bar{S}^{-1}]$$

 $(4)\iota_{\bar{S}}: \bar{A} \to \bar{A}[\bar{S}^{-1}]$ is injective.

EXAMPLE 5.5. $A_f = A[S^{-1}]$ for $S = \{1, f, f^2, f^3, f^4, \dots\}$. The total ring of quotients Q(A) is defined as $A[S^{-1}]$ for

 $S = \{x \in A; x \text{ is not a zero divisor of A}\}.$

When A is an integral domain, then Q(A) is the field of quotients of A.

DEFINITION 5.6. Let A be a commutative ring. Let \mathfrak{p} be its prime ideal. Then we define the localization of A with respect to \mathfrak{p} by

$$A_{\mathfrak{p}} = A[(A \setminus \mathfrak{p})^{-1}]$$

5.2. general localization of modules.

DEFINITION 5.7. Let S be a multiplicative subset of a commutative ring A. Let M be an A-module we may define $S^{-1}M$ as

$$\{(m/s); m \in M, s \in S\}/\sim$$

where the equivalence relation \sim is defined by

 $(m_1/s_1) \sim (m_2/s_2) \iff t(m_1s_2 - m_2s_1) = 0 \quad (\exists t \in S).$

We may introduce a $S^{-1}A$ -module structure on $S^{-1}M$ in an obvious manner.

 $S^{-1}M$ thus constructed satisfies an universality condition which the reader may easily guess.

5.3. local rings.

DEFINITION 5.8. A commutative ring A is said to be a local ring if it has only one maximal ideal.

EXAMPLE 5.9. We give examples of local rings here.

- Any field is a local ring.
- For any commutative ring A and for any prime ideal $\mathfrak{p} \in \operatorname{Spec}(A)$, the localization $A_{\mathfrak{p}}$ is a local ring with the maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.
- LEMMA 5.10. (1) Let A be a local ring. Then the maximal ideal of A coincides with $A \setminus A^{\times}$.
- (2) A commutative ring A is a local ring if and only if the set $A \setminus A^{\times}$ of non-units of A forms an ideal of A.

PROOF. (1) Assume A is a local ring with the maximal ideal \mathfrak{m} . Then for any element $f \in A \setminus A^{\times}$, an ideal $I = fA + \mathfrak{m}$ is an ideal of A. By Zorn's lemma, we know that I is contained in a maximal ideal of A. From the assumption, the maximal ideal should be \mathfrak{m} . Therefore, we have

$$fA \subset \mathfrak{m}$$

which shows that

$$A\setminus A^{\times}\subset \mathfrak{m}$$

The converse inclusion being obvious (why?), we have

$$A \setminus A^{\times} = \mathfrak{m}.$$

(2) The "only if" part is an easy corollary of (1). The "if" part is also easy.

COROLLARY 5.11. Let A be a commutative ring. Let \mathfrak{p} its prime ideal. Then $A_{\mathfrak{p}}$ is a local ring with the only maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

PROPOSITION 5.12. Let A be a commutative ring. Let $\mathfrak{p} \in \operatorname{Spec}(A)$ then the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} on \mathfrak{p} is isomorphic to $A_{\mathfrak{p}}$.

DEFINITION 5.13. Let A, B be local rings with maximal ideals $\mathfrak{m}_A, \mathfrak{m}_B$ respectively. A local homomorphism $\varphi : A \to B$ is a homomorphism which preserves maximal ideals. That means, a homomorphism φ is said to be local if

$$\varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$$