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5.1. general localization of a commutative ring. We define a lo-
calization of a commutative ring in a more general situation than in
subsection ??.

Definition 5.1. Let A be a commutative ring. Let S be its subset.
We say that S is multiplicative if

(1) 1 ∈ S
(2) x, y ∈ S =⇒ xy ∈ S

holds.

Definition 5.2. Let S be a multiplicative subset of a commutative
ring A. Then we define A[S−1] as

A[{Xs; s ∈ S}]/({sXs − 1; s ∈ S})
where in the above notation Xs is a indeterminate prepared for each
element s ∈ S.) We denote by ιS a canonical map A→ A[S−1].

Lemma 5.3. Let S be a multiplicative subset of a commutative ring
A. Then the ring B = A[S−1] is characterized by the following property:

Let C be a ring, φ : A → C be a ring homomorphism such that
φ(s) is invertible in C for any s ∈ S. Then there exists a unique ring
homomorphism ψ = ϕ[S−1] : B → C such that

φ = ψ ◦ ιS
holds.

Corollary 5.4. Let S be a multiplicative subset of a commutative
ring A. Let I be an ideal of A given by

I = {x ∈ I; ∃s ∈ S such that sx = 0}
Then (1) I is an ideal of A. Let us put Ā = A/I, π : A → Ā the
canonical projection. Then:

(2) S̄ = π(S) is multiplicatively closed.
(3) We have

A[S−1] ∼= Ā[S̄−1]

(4)ιS̄ : Ā→ Ā[S̄−1] is injective.

Example 5.5. Af = A[S−1] for S = {1, f, f 2, f 3, f 4, . . . }. The total
ring of quotients Q(A) is defined as A[S−1] for

S = {x ∈ A; x is not a zero divisor of A}.
When A is an integral domain, then Q(A) is the field of quotients of
A.

Definition 5.6. Let A be a commutative ring. Let p be its prime
ideal. Then we define the localization of A with respect to p by

Ap = A[(A \ p)−1]
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5.2. general localization of modules.

Definition 5.7. Let S be a multiplicative subset of a commutative
ring A. Let M be an A-module we may define S−1M as

{(m/s);m ∈M, s ∈ S}/ ∼
where the equivalence relation ∼ is defined by

(m1/s1) ∼ (m2/s2) ⇐⇒ t(m1s2 −m2s1) = 0 (∃t ∈ S).

We may introduce a S−1A-module structure on S−1M in an obvious
manner.

S−1M thus constructed satisfies an universality condition which the
reader may easily guess.

5.3. local rings.

Definition 5.8. A commutative ring A is said to be a local ring if
it has only one maximal ideal.

Example 5.9. We give examples of local rings here.

• Any field is a local ring.
• For any commutative ringA and for any prime ideal p ∈ Spec(A),
the localization Ap is a local ring with the maximal ideal pAp.

Lemma 5.10. (1) Let A be a local ring. Then the maximal ideal
of A coincides with A \ A×.

(2) A commutative ring A is a local ring if and only if the set A\A×

of non-units of A forms an ideal of A.

Proof. (1) Assume A is a local ring with the maximal ideal m.
Then for any element f ∈ A\A×, an ideal I = fA+m is an ideal of A.
By Zorn’s lemma, we know that I is contained in a maximal ideal of
A. From the assumption, the maximal ideal should be m. Therefore,
we have

fA ⊂ m

which shows that
A \ A× ⊂ m.

The converse inclusion being obvious (why?), we have

A \ A× = m.

(2) The “only if” part is an easy corollary of (1). The “if” part is also
easy.

□
Corollary 5.11. Let A be a commutative ring. Let p its prime

ideal. Then Ap is a local ring with the only maximal ideal pAp.

Proposition 5.12. Let A be a commutative ring. Let p ∈ Spec(A)
then the stalk Op of O on p is isomorphic to Ap.

Definition 5.13. LetA,B be local rings with maximal idealsmA,mB

respectively. A local homomorphism φ : A → B is a homomorphism
which preserves maximal ideals. That means, a homomorphism φ is
said to be local if

φ−1(mB) = mA


