next up previous
Next: About this document ... Up: Algebraic geometry and Ring Previous: Examples of

Further properties of $ \operatorname{Spec}$

LEMMA 03.1   Let $ A$ be a ring. Then:
  1. For any $ f\in A$ , $ D(f)=\{\mathfrak{p}\in \operatorname{Spec}(A); f \notin \mathfrak{p}\}$ is an open set of $ \operatorname{Spec}(A)$ .
  2. Given a point $ \mathfrak{p}$ of $ \operatorname{Spec}(A)$ and an open set $ U$ which contains $ \mathfrak{p}$ , we may always find an element $ f\in A$ such that $ \mathfrak{p}\in D(f)\subset U$ . (In other words, $ \{D(f)\}$ forms an open base of the Zariski topology.

THEOREM 03.2   For any ring $ A$ , $ \operatorname{Spec}(A)$ is compact. (But it is not Hausdorff in most of the case.)

DEFINITION 03.3   Let $ X$ be a topological space. A closed set $ F$ of $ X$ is said to be reducible if there exist closed sets $ F_1$ and $ F_2$ such that

% latex2html id marker 867
$\displaystyle F=F_1 \cup F_2,\quad F_1\neq F, F_2 \neq F
$

holds. $ F$ is said to be irreducible if it is not reducible.

Recall that we have defined, for any ring $ A$ and for any ideal $ I$ , a closed subset $ V(I)$ of $ \operatorname{Spec}(A)$ by

% latex2html id marker 879
$\displaystyle V(I)=\{ \mathfrak{p}\in \operatorname{Spec}(A); \operatorname{eval}_{\mathfrak{p}}(f)= 0 \quad (\forall f \in I).
$

We define:

DEFINITION 03.4   Let $ A$ be a ring. Let $ X$ be a subset of $ \operatorname{Spec}(A)$ . Then we define

% latex2html id marker 892
$\displaystyle I(X)= \{f \in A; \operatorname{eval}_{\mathfrak{p}}(f)=0 \quad ( \forall \mathfrak{p}\in I)\}.
$

LEMMA 03.5   Let $ A$ be a ring. Then:
  1. For any subset $ X$ of $ \operatorname{Spec}(A)$ , $ I(X)$ is an ideal of $ A$ .
  2. (For any subset $ S$ of $ A$ , $ V(S)$ is a closed subset of $ \operatorname{Spec}(A)$ .)
  3. For any subsets $ X_1 \subset X_2$ of $ \operatorname{Spec}(A)$ , we have $ I(X_1 )\supset I(X_2)$ .
  4. For any subsets $ S_1\subset S_2$ of $ A$ , we have $ V(S_1) \supset V(S_2) $ .
  5. For any subset $ X$ of $ \operatorname{Spec}(A)$ , we have $ V(I(X))\subset X$ .
  6. For any subset $ S$ of $ A$ , we have $ I(V(S))\subset S$ .

COROLLARY 03.6   Let $ A$ be a ring. Then:
  1. For any subset $ X$ of $ \operatorname{Spec}(A)$ , we have $ I(V(I(X)))= I(X)$ .
  2. For any subset $ S$ of $ A$ , we have $ V(I(V(S)))=V(S)$ .

DEFINITION 03.7   Let $ I$ be an ideal of a ring $ A$ . Then we define its radical to be

% latex2html id marker 969
$\displaystyle \sqrt{I}=\{ x \in A; \exists N\in \mathbb{Z}_{>0}$    such that $\displaystyle x^N \in I\}.
$

PROPOSITION 03.8   Let $ A$ be a ring. Then;
  1. For any ideal $ I$ of $ A$ , we have % latex2html id marker 983
$ V(I)=V(\sqrt{I})$ .
  2. For two ideals $ I$ , $ J$ of $ A$ , $ V(I)=V(J)$ holds if and only if % latex2html id marker 993
$ \sqrt{I}=\sqrt{J}$ .
  3. For an ideal $ I$ of $ A$ , $ V(I)$ is irreducible if and only if % latex2html id marker 1001
$ \sqrt{I}$ is a prime ideal.


next up previous
Next: About this document ... Up: Algebraic geometry and Ring Previous: Examples of
2017-07-21