next up previous
Next: About this document ... Up: Algebraic geometry and Ring Previous: Algebraic geometry and Ring

$ \operatorname {Spec}A$

DEFINITION 02.1   An ideal $ I$ of a ring $ A$ is said to be
  1. a prime ideal if $ A/I$ is an integral domain.
  2. a maximal ideal if $ A/I$ is a field.

DEFINITION 02.2   Let $ A$ be a ring. Then we define its affine spectrum as

$\displaystyle \operatorname{Spec}(A)=\{ \mathfrak{p}\subset A ; \mathfrak{p}$ is a prime ideal of $A$$\displaystyle \}.
$

DEFINITION 02.3   Let $ A$ be a ring. For any $ \mathfrak{p}\in \operatorname{Spec}(A)$ we define ``evaluation map'' $ \operatorname{eval}_\mathfrak{p}$ as follows:

$\displaystyle \operatorname{eval}_\mathfrak{p}: A \to A/\mathfrak{p}
$

Note that $ A/\mathfrak{p}$ is a subring of a field $ Q(A/\mathfrak{p})$ , the field of fractions of the integral domain $ A/\mathfrak{p}$ . We interpret each element $ f$ of $ A$ as a something of a ``fuction'', whose value at a point $ \mathfrak{p}$ is given by $ \operatorname{eval}_\mathfrak{p}(f)$ .

We introduce a topology on $ \operatorname{Spec}(A)$ . We basically mimic the following Lemma:

LEMMA 02.4   Let $ X$ be a topological space. then for any continuous function $ f: X \to \mathbb{C}$ , its zero points $ \{ x \in X; f(x)=0\}$ is a closed subset of $ X$ . Furthermore, for any family $ \{f_\lambda\}$ of continous $ \mathbb{C}$ -valued functions, its common zeros % latex2html id marker 826
$ \{x \in X; f_\lambda(x)=0 \quad (\forall \lambda)\}$ is a closed subset of $ X$ .

DEFINITION 02.5   Let $ A$ be a ring. Let $ S$ be a subset of $ A$ , then we define the common zero of $ S$ as

% latex2html id marker 843
$\displaystyle V(S)=\{ \mathfrak{p}\in \operatorname{Spec}(A) ; \operatorname{eval}_\mathfrak{p}(f)=0 \qquad(\forall f\in S\}.
$

For any subset $ S$ of $ A$ , let us denote by $ \langle S \rangle_{A}$ the ideal of $ A$ generated by $ S$ . Then we may soon see that we have $ V(S)=V(\langle S\rangle_A)$ . So when thinking of $ V(S)$ we may in most cases assume that $ S$ is an ideal of $ A$ .

LEMMA 02.6   Let $ A$ be a ring. Then:
  1. % latex2html id marker 870
$ V(0)=\operatorname{Spec}(A), \quad V(\{1\})(=V(A))=\emptyset.$
  2. For any family $ \{I_\lambda\}$ of ideals of $ A$ , we have $ \cap_{\lambda} V(I_\lambda) = V(\sum_\lambda I_{\lambda}).$
  3. For any ideals $ I,J$ of $ A$ , we have $ V(I)\cup V(J)=V(I \cdot J)$ .

PROPOSITION 02.7   Let $ A$ be a ring. $ \{ V(I); I$    is an ideal of $ A\}$ satisfies the axiom of closed sets of $ \operatorname{Spec}(A)$ . We call this the Zariski topology of $ \operatorname{Spec}(A)$ .

PROBLEM 02.8   Prove Lemma 2.6.


next up previous
Next: About this document ... Up: Algebraic geometry and Ring Previous: Algebraic geometry and Ring
2017-07-21