next up previous
Next: About this document ... Up: , , and the Previous: The ring of -adic

The ring of $ p$ -adic Witt vectors for general $ A$

In the preceding subsection we have described how the ring $ \mathcal W_1(A)$ of universal Witt vectors decomposes into a countable direct sum of the ring of $ p$ -adic Witt vectors. In this subsedtion we show that thering $ W^{(p)}(A)$ can be defined for any ring $ A$ (that means,without the assummption of $ A$ being characteristic $ p$ ).

We need some tools.

DEFINITION 9.11   Let $ A$ be any commutative ring. Let $ n$ be a positive integer. Let us define additive operators $ V_n,F_n$ on $ \mathcal W_1(A)$ by the following formula.

$\displaystyle V_n((f(T))_W)=(f(T^n))_W.
$

$\displaystyle F_n((f(T))_W)=(\prod_{\zeta\in \mu_n} f(\zeta T^{1/n}))_W
$

(The latter definition is a formal one. It certainly makes sense when $ A$ is an algebra over $ \mathbb{C}$ . Then the definition descends to a formal law defined over $ \mathbb{Z}$ so that $ F_n$ is defined for any ring $ A$ . In other words, $ F_n$ is actually defined to be the unique continuous additive map which satisfies

% latex2html id marker 1707
$\displaystyle F_n((1-a T^l)_)=
((1-a ^{m/l} T^{m/n})^{l n/m})_W \qquad(m= \operatorname{lcm}(n,l)).
$

)

LEMMA 9.12   Let $ p$ be a prime number. Let $ A$ be acommutative ring of characteristic $ p$ . Then:
  1. We have

    % latex2html id marker 1720
$\displaystyle F_p(f(T))=(f(T^{1/p}))^{p} \qquad (\forall f\in \mathcal W_1(A)).
$

    in partucular, $ F_p$ is an algebra endomorphism of $ \mathcal W_1(A)$ in this case.
  2. $\displaystyle V_p(F_p((f)_W)=F_p (V_p((f)_W))=(f(T)^p)_W=p \cdot (f(T))_W
$

DEFINITION 9.13   Let $ A$ be any commutative ring. Let $ p$ be a prime number. We denote by

$\displaystyle \mathcal W^{(p)} (A)=A^{\mathbb{N}}.
$

and define

$\displaystyle \pi_p: \mathcal W_1(A) \to \mathcal W^{(p)}(A)
$

by

$\displaystyle \pi_p
\left (
\sum _{j=1}^{\infty}
(1-x_j T^j)
\right )
= (x_1,x_p,x_{p^2},x_{p^3}\dots).
$

LEMMA 9.14   Let us define polynomials $ \alpha_j(X,Y)\in \mathbb{Z}[X,Y]$ by the following relation.

$\displaystyle (1-x T)(1-y T)=\prod_{j=1}^\infty (1-\alpha_j(x,y) T^j).
$

Then we have the following rule for ``carry operation'':

$\displaystyle (1-x T^n)_W + (1-y T^n)_W
=\sum_{j=1}^{\infty} (1-\alpha_j(x,y)T^{j n}).
$

PROPOSITION 9.15   There exist unique binary operators $ +$ and $ \cdot $ on $ \mathcal W^{(p)}(A)$ such that the following diagrams commute.

$\displaystyle \begin{CD}
\mathcal W_1 (A)\times \mathcal W_1 (A) @>+» \mathcal...
...mathcal W^{(p)}(A)\times \mathcal W^{(p)}(A) @>+» \mathcal W^{(p)}(A)
\end{CD}$

$\displaystyle \begin{CD}
\mathcal W_1 (A)\times \mathcal W_1 (A) @>\cdot » \ma...
...al W^{(p)}(A)\times \mathcal W^{(p)}(A) @>\cdot » \mathcal W^{(p)}(A)
\end{CD}$

PROOF.. Using the rule as in the previous lemma, we see that addition descends to an addition of $ \mathcal W^{(p)}(A)$ . It is easier to see that the multiplication also descends.

% latex2html id marker 1769
$ \qedsymbol$

DEFINITION 9.16   For any commutative ring $ A$ , elements of $ W^{(p)}(A)$ are called $ p$ -adic Witt vectors over $ A$ . The ring $ (W^{(p)}(A),+,\cdot )$ is called the ring of $ p$ -adic Witt vectors over $ A$ .

LEMMA 9.17   Let $ p$ be a prime number. Let $ A$ be a ring of characteristic $ p$ . Then for any $ n$ which is not divisible by $ p$ , the map

$\displaystyle \frac{1}{n} \cdot V_n :
\mathcal W_1(A)
\to
\mathcal W_1(A)
$

is a ``non-unital ring homomorphism". Its image is equal to the range of the idempotent $ e_n$ . That means,

$\displaystyle \operatorname{Image}(\frac{1}{n}\cdot V_n)
=e_n \cdot \mathcal W_1(A)
=\{\sum_j (1-y_j T^{n j})_W; y_j \in A\}.
$

PROOF.. $ V_n$ is already shown to be additive. The following calculation shows that $ \frac{1}{n} \cdot V_n$ preserves the multiplication: for any positive integer $ a,b$ with lcm $ m$ and for any element $ x,y \in A$ , we have:

      $\displaystyle (\frac{1}{n}\cdot V_n((1-x T^a)_W)) \cdot (\frac{1}{n}\cdot V_n((1-y T^b)_W))$
    $\displaystyle =$ $\displaystyle (\frac{1}{n}\cdot (1-x T^{a n})_W) \cdot (\frac{1}{n}\cdot (1-y T^{b n})_W)$
    $\displaystyle =$ $\displaystyle \frac{1}{n^2}\cdot\frac{an \cdot bn}{nm} \left((1-x^{m/a}y^{m/b} T^{nm} )^d\right)_W$
    $\displaystyle =$ $\displaystyle \frac{1}{n} \cdot V_n(((1-x T^a )_W\cdot (1-y T^b)_W)$

We then notice that the image of the unit element $ [1]$ of the Witt algebra is equal to $ \frac{1}{n}V_n ([1] )= e_n$ ant that $ \frac{1}{n} V(e_n f)=e_n f$ for any $ f \in \mathcal W_1(A)$ . The rest is then obvious. % latex2html id marker 1814
$ \qedsymbol$

In preparing from No.7 to No.10 of this lecture, the following reference (especially its appendix) has been useful:

http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf


next up previous
Next: About this document ... Up: , , and the Previous: The ring of -adic
docky 2016-06-18