next up previous
Next: About this document ... Up: No.07 Previous: No.07

Congruent zeta as a zeta of a dynamical system

The definition of Artin Mazur zeta function is valid without assuming the number of the base space $ M$ to be a finite set.

DEFINITION 07.7   Let $ M$ be a set. Let $ f: M\to M$ be a map such that $ \char93 \operatorname{Fix}(f^n)$ is finite for any $ n>0$ . We define the Artin-Mazur zeta function of a dynamical system $ (M,f)$ as

$\displaystyle Z((M,f),T)=
\exp(\sum_{j=1}^\infty \frac{\char93  \operatorname{Fix}(f^j) T^j}{j})
$

Let % latex2html id marker 856
$ q$ be a power of a prime $ p$ . We may consider an automorphism % latex2html id marker 860
$ \operatorname{Frob}_q $ of % latex2html id marker 862
$ \bar{\mathbb{F}_{q}}$ over % latex2html id marker 864
$ \mathbb{F}_q$ by

% latex2html id marker 866
$\displaystyle \operatorname{Frob}_q(x)=x^q
$

PROPOSITION 07.8   % latex2html id marker 873
$ \operatorname{Frob}_q: \mathbb{F}_{q^r}\to \mathbb{F}_{q^r}$ is an automorphism of order $ r$ . It is a generator of the Galois group % latex2html id marker 877
$ \operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ .

For any projective variety $ X$ defined over % latex2html id marker 881
$ \mathbb{F}_q$ , we may define a Frobenius action % latex2html id marker 883
$ \operatorname{Frob}_q$ on % latex2html id marker 885
$ X(\bar{\mathbb{F}_q})$ :

% latex2html id marker 887
$\displaystyle \operatorname{Frob}_q([x_0:x_1:\dots x_N])
=
([x_0^q:x_1^q:\dots x_N^q]).
$

For any % latex2html id marker 889
$ \bar{\mathbb{F}_q}$ -valued point % latex2html id marker 891
$ x \in X(\bar{\mathbb{F}_q})$ , We have

% latex2html id marker 893
$\displaystyle \operatorname{Frob}_q^r(x)=x \iff x \in X(\mathbb{F}_{q^r}).
$

PROPOSITION 07.9   The Artin Mazur zeta function of the dynamical system % latex2html id marker 900
$ (X(\bar{\mathbb{F}_q}),\operatorname{Frob}_q)$ conincides with the congruent zeta function % latex2html id marker 902
$ Z(X/\mathbb{F}_q,t)$ .


next up previous
Next: About this document ... Up: No.07 Previous: No.07
Yoshifumi Tsuchimoto 2016-06-18