next up previous
Next: Bibliography

Zeta functions. No.8

Yoshifumi Tsuchimoto

DEFINITION 8.1   A category $ \mathcal{C}$ is a collection of the following data
  1. A collection $ \operatorname{Ob}(\mathcal{C})$ of objects of $ \mathcal{C}$ .
  2. For each pair of objects $ X,Y \in \operatorname{Ob}(\mathcal{C})$ , a set

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)
$

    of morphisms.
  3. For each triple of objects $ X,Y,Z \in \operatorname{Ob}(\mathcal{C})$ , a map(``composition (rule)'')

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)\times
\operatorname{Hom}_{\mathcal{C}}(Y,Z)\to
\operatorname{Hom}_{\mathcal{C}}(X,Z)
$

satisfying the following axioms

  1. $ \operatorname{Hom}(X,Y)\cap \operatorname{Hom}(Z,W) =\emptyset$ unless $ (X,Y)=(Z,W)$ .
  2. (Existence of an identity) For any $ X\in \operatorname{Ob}(\mathcal{C})$ , there exists an element $ \operatorname{id}_X\in \operatorname{Hom}(X,X)$ such that

    % latex2html id marker 765
$\displaystyle \operatorname{id}_X \circ f=f,\quad g \circ \operatorname{id}_X=g
$

    holds for any $ f \in \operatorname{Hom}(S,X), g \in \operatorname{Hom}(X,T)$ ( $ \forall S,T \in \operatorname{Ob}(\mathcal{C})$ ).
  3. (Associativity) For any objects $ X,Y,Z,W \in \operatorname{Ob}(\mathcal{C})$ , and for any morphisms $ f\in \operatorname{Hom}(X,Y), g\in \operatorname{Hom}(Y,Z), h \in \operatorname{Hom}(Z,W)$ , we have

    $\displaystyle (f\circ g)\circ h
=f\circ (g\circ h).
$

DEFINITION 8.2  

  1. A morphism $ f: X\to Y$ in a category is said to be monic if for any object $ Z$ of $ \mathcal{C}$ and for any morphism $ g_1,g_2: Z\to X$ , we have

    $\displaystyle f\circ g_1 =f \circ g_2 \implies g_1=g_2
$

  2. A morphism $ f: X\to Y$ in a category is said to be epic if for any object $ Z$ of $ \mathcal{C}$ and for any morphism $ g_1,g_2: Y\to Z$ , we have

    $\displaystyle g_1\circ f = g_2 \circ f \implies g_1=g_2
$

DEFINITION 8.3   An object $ X$ is called initial (resp. terminal) if $ \operatorname{Hom}(X, Y) (resp. \operatorname{Hom}(Y, X))$ consists of only one element for every object $ Y$ . We say that an object $ X$ is a zero object if $ X$ is initial and terminal. It follows that all the zero objects of $ \mathcal{C}$ are isomorphic.

DEFINITION 8.4   Let $ \mathcal{C}$ be a category with a zero object. We say that an object $ X\in \operatorname{Ob}(\mathcal{C})$ is simple when $ \operatorname{Hom}(X, Y)$ is consisting of monomorph isms and zero-morphisms for every object $ Y$ . The norm $ N(X)$ of an object $ X$ is defined as

$\displaystyle N(X)= \char93 \operatorname{End}(X) = \char93 Hom(X,X)
$

where $ \char93  \operatorname{End}(X)$ is the cardinality of endomorphisms of $ X$ . We say that a non-zero object $ X$ is finite if $ N(X)$ is finite.

The treatment here is based on a paper of Kurokawa[1].

DEFINITION 8.5   We denote by $ P(C)$ the isomorphism classes of all finite simple objects of $ C$ . Remark that for each $ P= [X]\in P(C)$ the norm $ N(P)= N(X)$ is well-defined, We define the zeta function $ (s, \mathcal{C})$ of $ \mathcal{C}$ as

$\displaystyle \zeta(s, C)= \prod_{p \in P(\mathcal{C})} (1-N(p)^{-s} )^{-1}.
$

PROPOSITION 8.6   The zeta function of the category Ab of abelian groups is equal to the Riemann zeta function. In other words, we have

$\displaystyle \zeta(s,{\rm Ab})=\zeta(s).
$


next up previous
Next: Bibliography
2013-06-13