next up previous
Next: About this document ... Up: generating functions Previous: Ordinary generating function

Dirichlet series generating function

$\displaystyle G_1( \{a_n\}; s)=\sum_{n=1}^\infty \frac{a_n} {n^s}
$

PROPOSITION 01.5 (Euler product expression)   Assume $ \{a_n\}$ is multiplicative in the sense that

$\displaystyle \gcd(n,m)=1 \implies a_n a_m =a_{nm}
$

holds, Then we have

$\displaystyle \sum_{n=1}^\infty \frac{a_n} {n^s}
=\prod_{p; \text{prime}}
\left(
\sum_{k=0}^\infty \frac{a_{p^k} }{p^{ks}}
\right).
$



2015-04-10