RESOLUTIONS OF SINGULARITIES.

YOSHIFUMI TSUCHIMOTO

05. supplement

PROPOSITION 5.1. For any ring A, the map $\mathbb{P}^n(A) \to \operatorname{Spec} A$ is proper.

PROOF. See http://amathew.wordpress.com/2010/10/23/a-projective-morphism-is-proper/.

COROLLARY 5.2. For any ring A and for any \mathbb{N} -graded ring $S = \bigoplus_n S_n$ which is generated by a finite subset of S_1 over the ring $S_0 \cong A$, the map $\operatorname{Proj}(S) \to \operatorname{Spec} A$ is proper.

PROPOSITION 5.3. Let I be an ideal of a ring A generated by elements $f_0, \ldots f_s$. Assume that each of the elements f_0, f_1, \ldots, f_s is not a zero divisor in A. Then:

- (1) $\bigoplus_{n \in \mathbb{N}} I^n \subset \bigoplus_{n \in \mathbb{N}} A$ is isomorphic to $A[I \cdot T] \subset A[T]$ for an indeterminate T.
- (2)

$$\operatorname{Proj}(\oplus A[IT]) = \operatorname{Proj}(\oplus A[f_0T, f_1T, \dots, f_sT]) = \cup_{i=0}^s D_+(f_iT)$$

(3) $D_+(f_iT) \cong \operatorname{Spec} A[f_0/f_i, f_1/f_i, \dots, f_s/f_i].$

DEFINITION 5.4. Let A be a commutative ring. Let \mathfrak{p} be its prime ideal. Then we define the localization of A with respect to \mathfrak{p} by

$$A_{\mathfrak{p}} = A[(A \setminus \mathfrak{p})^{-1}]$$

DEFINITION 5.5. A commutative ring A is said to be a local ring if it has only one maximal ideal.

EXAMPLE 5.6. We give examples of local rings here.

- Any field is a local ring.
- For any commutative ring A and for any prime ideal $\mathfrak{p} \in \operatorname{Spec}(A)$, the localization $A_{\mathfrak{p}}$ is a local ring with the maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

LEMMA 5.7. (1) Let A be a local ring. Then the maximal ideal of A coincides with $A \setminus A^{\times}$.

(2) A commutative ring A is a local ring if and only if the set $A \setminus A^{\times}$ of non-units of A forms an ideal of A.

PROOF. (1) Assume A is a local ring with the maximal ideal \mathfrak{m} . Then for any element $f \in A \setminus A^{\times}$, an ideal $I = fA + \mathfrak{m}$ is an ideal of A. By Zorn's lemma, we know that I is contained in a maximal ideal of A. From the assumption, the maximal ideal should be \mathfrak{m} . Therefore, we have

 $fA \subset \mathfrak{m}$

which shows that

$$A \setminus A^{\times} \subset \mathfrak{m}$$

The converse inclusion being obvious (why?), we have

$$A \setminus A^{\times} = \mathfrak{m}$$

(2) The "only if" part is an easy corollary of (1). The "if" part is also easy.

COROLLARY 5.8. Let A be a commutative ring. Let \mathfrak{p} its prime ideal. Then $A_{\mathfrak{p}}$ is a local ring with the only maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

DEFINITION 5.9. Let A, B be local rings with maximal ideals $\mathfrak{m}_A, \mathfrak{m}_B$ respectively. A local homomorphism $\varphi : A \to B$ is a homomorphism which preserves maximal ideals. That means, a homomorphism φ is said to be loc al if

$$\varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$$

EXAMPLE 5.10 (of NOT being a local homomorphism).

$$\mathbb{Z}_{(p)} \to \mathbb{Q}$$

is not a local homomorphism.

LEMMA 5.11 (Zorn's lemma). Let S be a partially ordered set. Assume that every totally ordered subset of S has an upper bound in S. Then S has at least one maximal element.

PROPOSITION 5.12. Let A be a commutative ring. let I be an ideal of A such that $A \neq I$. Then there exists a maximal ideal \mathfrak{m} of A which contains I.

THEOREM 5.13 (Nakayama's lemma, or NAK). Let A be a commutative ring. Let M be an A-module. We assume that M is finitely generated (as a module) over A. That means, there exists a finite set of elements $\{m_i\}_{i=1}^t$ such that

$$M = \sum_{i=1}^{t} Am_i$$

holds. If an ideal I of A satisfies

$$IM = M$$
 (that is, $M/IM = 0$),

then there exists an element $c \in I$ such that

$$cm = m$$
 $(\forall m \in M)$

holds. If furthermore I is contained in $\cap_{\mathfrak{m}\in \operatorname{Spm}(A)}\mathfrak{m}$ (the Jacobson radical of A), then we have M = 0.

PROOF. Since IM = M, there exists elements $b_{il} \in I$ such that

$$a_i = \sum_{l=1}^t b_{il} a_l \qquad (1 \le i \le t)$$

holds. In a matrix notation, this may be rewritten as

$$v = Bv$$

with $v =^t (m_1, \ldots, m_n)$, $B = (b_{ij}) \in M_t(I)$. Using the unit matrix $1_t \in M_t(A)$ one may also write :

$$(1_t - B)v = 0.$$

Now let R be the adjugate matrix of $1_t - B$. In other words, it is a matrix which satisfies

$$R(1_t - B) = (1_t - B)R = (\det(1_t - B))1_t.$$

Then we have

$$\det(1_t - B) \cdot v = R(1_t - B)v = 0.$$

On the other hand, since $1_t - B = 1_t$ modulo I, we have $det(1_t - B) = 1 - c$ for some $c \in I$. This c clearly satisfies

$$v = cv$$

We need a criterion for regularity. Instead of developing the vast theory of regular rings, we site here the following theorem:

THEOREM 5.14. (Matsumura "commutative ring theory" Theorem 14.2) Let (R, \mathfrak{m}) be a regular local ring. then the following two statements are equivalent:

- (1) The images in $\mathfrak{m}/\mathfrak{m}^2$ of x_1, \ldots, x_i are linearly independent over R/\mathfrak{m} .
- (2) $R/(x_1, \ldots, x_i)$ is an (n-i)-dimensional regular local ring.