ZETA FUNCTIONS. NO.7

YOSHIFUMI TSUCHIMOTO

Congruent zeta as a zeta of a dynamical system.

The definition of Artin Mazur zeta function is valid without assuming the number of the base space M to be a finite set.

DEFINITION 7.1. Let M be a set. Let $f : M \to M$ be a map such that $\# \operatorname{Fix}(f^n)$ is finite for any n > 0. We define the Artin-Mazur zeta function of a dynamical system (M, f) as

$$Z((M, f), T) = \exp(\sum_{j=1}^{\infty} \frac{\#\operatorname{Fix}(f^j)T^j}{j})$$

Let q be a power of a prime p. We may consider an automorphism Frob_q of $\overline{\mathbb{F}}_q$ over \mathbb{F}_q by

$$\operatorname{Frob}_q(x) = x^q$$

PROPOSITION 7.2. Frob_q : $\mathbb{F}_{q^r} \to \mathbb{F}_{q^r}$ is an automorphism of order r. It is a generator of the Galois group $\operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$.

For any projective variety X defined over \mathbb{F}_q , we may define a Frobenius action Frob_q on $X(\overline{\mathbb{F}}_q)$:

$$\operatorname{Frob}_q([x_0:x_1:\ldots x_N]) = ([x_0^q:x_1^q:\ldots x_N^q]).$$

For any $\overline{\mathbb{F}}_q$ -valued point $x \in X(\overline{\mathbb{F}}_q)$, We have

$$\operatorname{Frob}_{q}^{r}(x) = x \iff x \in X(\mathbb{F}_{q^{r}})$$

PROPOSITION 7.3. The Artin Mazur zeta function of the dynamical system $(X(\bar{\mathbb{F}}_q), \operatorname{Frob}_q)$ conincides with the congruent zeta function $Z(X/\mathbb{F}_q, t)$.