ZETA FUNCTIONS. NO.4

YOSHIFUMI TSUCHIMOTO

We quote the famous Weil conjecture

CONJECTURE 4.1 (Now a theorem ¹). Let X be a projective smooth variety of dimension d. Then:

W1. (Rationality)

$$Z(X,T) = \frac{P_1(X,T)P_3(X,T)\dots P_{2d-1}(X,T)}{P_0(X,T)P_2(X,T)\dots P_{2d}(X,T)}$$

W2. (Integrality) $P_0(X,T) = 1 - T$, $P_{2d}(X,T) = 1 - q^d T$, and for each r, P_r is a polynomial in $\mathbb{Z}[T]$ which is factorized as

$$P_r(X,T) = \prod (1 - a_{r,i}T)$$

where $a_{r,i}$ are algebraic integers.

W3. (Functional Equation)

$$Z(X, 1/q^d T) = \pm q^{d\chi/2} T^{\chi} Z(t)$$

where $\chi = (\Delta \Delta)$ is an integer.

- W4. (Rieman Hypothesis) each $a_{r,i}$ and its conjugates have absolute value $q^{r/2}$.
- W5. If X is the specialization of a smooth projective variety Y over a number field, then the degree of $P_r(X,T)$ is equal to the r-th Betti number of the complex manifold $Y(\mathbb{C})$. (When this is the case, the number χ above is equal to the "Euler characteristic" $\chi = \sum_i (-1)^i b_i$ of $Y(\mathbb{C})$.)

It is a profound theorem, relating rational points $X(\mathbb{F}_q)$ of X over finite fields and topology of $Y(\mathbb{C})$.

The following proposition (which is a precursor of the above conjecture) is a special case

PROPOSITION 4.2 (Weil). Let E be an elliptic curve over \mathbb{F}_q . Then we have

$$Z(E/\mathbb{F}_q, T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

where a is an integer which satisfies $|a| \leq 2\sqrt{q}$.

¹There are a lot of people who contributed. See the references.

YOSHIFUMI TSUCHIMOTO

Note that for each E we have only one unknown integer a to determine the Zeta function. So it is enough to compute $\#E(\mathbb{F}_q)$. to compute the Zeta function of E. (When q = p then one may use the result in the preceding section.)

For a further study we recommend [1, Appendix C],[2].

References

[1] R. Hartshorne, Algebraic geometry, Springer Verlag, 1977.

[2] J. S. Milne, Étale cohomology, Princeton University Press, 1980.