next up previous
Next: Bibliography

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{08. Homological algebra}

DEFINITION 08.1   Let $ R$ be a ring. A cochain complex of $ R$ -modules is a sequence of $ R$ -modules

$\displaystyle C^\bullet: \dots \overset{d^{n-1}}{\to} C^n
\overset{d^{n}}{\to} C^{n+1} \overset{d^{n+1}}{\to} \dots
$

such that $ d^{n}\circ d^{n-1}=0$ . The $ n$ -th cohomology of the cochain complex is defined to be the $ R$ -module

$\displaystyle H^{n}(C^\bullet)=\operatorname{Ker}(d^{n})/\operatorname{Image}(d^{n-1}).
$

Elements of $ \operatorname{Ker}(d^{n})$ (respectively, $ \operatorname{Image}(d^{n-1})$ ) are often referred to as cocycles (respectively, coboundaries).

DEFINITION 08.2   Let $ R$ be a ring.
  1. An $ R$ -module $ I$ is said to be injective if it satisfies the following condition: For any $ R$ -module homomorphism $ f:M \to I$ and for any monic $ R$ -module homomorphism $ \iota:N \to M$ , $ f$ ``extends'' to an $ R$ -module homomorphism $ \hat f: M\to I$ .

    $\displaystyle \begin{CD}
M @>\hat f >>I \\
@A \iota AA @\vert \\
N @>f >> I
\end{CD}$

  2. A $ R$ -module $ P$ is said to be projective if it satisfies the following condition: For any $ R$ -module homomorphism $ f: P \to N $ and for any epic $ R$ -module homomorphism $ \pi:M \to N$ , $ f$ ``lifts'' to a morphism $ \hat f: M\to I$ .

    $\displaystyle \begin{CD}
P @>\hat f >>M \\
@\vert @V\pi VV \\
P @>f >> N
\end{CD}$

EXERCISE 08.1   Let $ R$ be a ring. Let

$\displaystyle 0\to M_1 \to M_2 \to M_3 \to 0
$

be an exact sequence of $ R$ -modules. Assume furthermore that $ M_3$ is projective. Then show that the sequence

$\displaystyle 0 \to \operatorname{Hom}_R (N,M_1)
\overset{\operatorname{Hom}_R(...
..._2)
\overset{\operatorname{Hom}_R(N,g)}{\to} \operatorname{Hom}_R(N,M_3) \to 0
$

is exact.

LEMMA 08.3   Let $ R$ be a (unital associative but not necessarily commutative) ring. Then for any $ R$ -module $ M$ , the following conditions are equivalent.
  1. $ M$ is a direct summand of free modules.
  2. $ M$ is projective

COROLLARY 08.4   For any ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules have enough projectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists a projective object $ P$ and a surjective morphism $ f: P \to M$ .

DEFINITION 08.5   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is surjective.

DEFINITION 08.6   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is epic.

LEMMA 08.7   Let $ R$ be a (commutative) principal ideal domain (PID). Then an $ R$ -module $ I$ is injective if and only if it is divisible.

PROPOSITION 08.8   For any (not necessarily commutative) ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules has enough injectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists an injective object $ I$ and an monic morphism $ f:M \to I$ .

A bit of category theory:

DEFINITION 08.9   A category $ \mathcal{C}$ is a collection of the following data
  1. A collection $ \operatorname{Ob}(\mathcal{C})$ of objects of $ \mathcal{C}$ .
  2. For each pair of objects $ X,Y \in \operatorname{Ob}(\mathcal{C})$ , a set

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)
$

    of morphisms.
  3. For each triple of objects $ X,Y,Z \in \operatorname{Ob}(\mathcal{C})$ , a map(``composition (rule)'')

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)\times
\operatorname{Hom}_{\mathcal{C}}(Y,Z)\to
\operatorname{Hom}_{\mathcal{C}}(X,Z)
$

satisfying the following axioms
  1. $ \operatorname{Hom}(X,Y)\cap \operatorname{Hom}(Z,W) =\emptyset$ unless $ (X,Y)=(Z,W)$ .
  2. (Existence of an identity) For any $ X\in \operatorname{Ob}(\mathcal{C})$ , there exists an element $ \operatorname{id}_X\in \operatorname{Hom}(X,X)$ such that

    % latex2html id marker 1472
$\displaystyle \operatorname{id}_X \circ f=f,\quad g \circ \operatorname{id}_X=g
$

    holds for any $ f \in \operatorname{Hom}(S,X), g \in \operatorname{Hom}(X,T)$ ( $ \forall S,T \in \operatorname{Ob}(\mathcal{C})$ ).
  3. (Associativity) For any objects $ X,Y,Z,W \in \operatorname{Ob}(\mathcal{C})$ , and for any morphisms $ f\in \operatorname{Hom}(X,Y), g\in \operatorname{Hom}(Y,Z), h \in \operatorname{Hom}(Z,W)$ , we have

    $\displaystyle (f\circ g)\circ h
=f\circ (g\circ h).
$

Morphisms are the basic actor/actoress in category theory.

An additive category is a category in which one may ``add'' some morphisms.

DEFINITION 08.10   An additive category $ \mathcal{C}$ is said to be abelian if it satisfies the following axioms.
A4-1.
Every morphism $ f:X\to Y$ in $ \mathcal{C}$ has a kernel $ \ker(f):\operatorname{Ker}(f)\to X$ .
A4-2.
Every morphism $ f:X\to Y$ in $ \mathcal{C}$ has a cokernel $ \operatorname{coker}(f):Y\to \operatorname{Coker}(f)$ .
A4-3.
For any given morphism $ f:X\to Y$ , we have a suitably defined isomorphism

$\displaystyle l: \operatorname{Coker}(\ker(f))\cong \operatorname{Ker}(\operatorname{coker}(f))
$

in $ \mathcal{C}$ . More precisely, $ l$ is a morphism which is defined by the following relations:

% latex2html id marker 1511
$\displaystyle \ker(\operatorname{coker}(f))\circ \...
...exists \overline{f}),\quad
\overline{f}=l \circ \operatorname{coker}(\ker(f)).
$

DEFINITION 08.11   A (covariant) functor $ F$ from a category $ \mathcal C$ to a category $ \mathcal D$ consists of the following data:
  1. An function which assigns to each object $ C$ of $ \mathcal C$ an object $ F(C)$ of $ \mathcal D$ .
  2. An function which assigns to each morphism $ f$ of $ \mathcal C$ an morphism $ F(f)$ of $ \mathcal D$ .
The data must satisfy the following axioms:
functor-1.
$ F(1_C)=1_{F(C)}$ for any object $ C$ of $ \mathcal C$ .
functor-2.
$ F(f\circ g)=F(f)\circ F(g)$ for any composable morphisms $ f,g$ of $ \mathcal C$ .

By employing the following axiom instead of the axiom (functor-2) above, we obtain a definition of a contravariant functor:

(functor-$ 2'$ ) $ F(f\circ g)=F(g)\circ F(f)$ for any composable morphisms

DEFINITION 08.12   Let $ F: \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call $ F$ additive if for any objects $ M, N$ in $ \mathcal{C}_1$ ,

$\displaystyle \operatorname{Hom}(M,N)\to \operatorname{Hom}(F(M),F(N))
$

is additive.

DEFINITION 08.13   Let $ F$ be an additive functor from an abelian category $ \mathcal{C}_1$ to $ \mathcal{C}_2$ .
  1. $ F$ is said to be left exact (respectively, right exact ) if for any exact sequence

    $\displaystyle 0 \to L\to M\to N\to 0,
$

    the corresponding map

    $\displaystyle 0\to F(L)\to F(M)\to F(N)
$

    (respectively,

    $\displaystyle F(L)\to F(M)\to F(N) \to 0)
$

    is exact
  2. $ F$ is said to be exact if it is both left exact and right exact.

LEMMA 08.14   Let $ R$ be a (unital associative but not necessarily commutative) ring. Then for any $ R$ -module $ M$ , the following conditions are equivalent.
  1. $ M$ is a direct summand of free modules.
  2. $ M$ is projective

COROLLARY 08.15   For any ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules have enough projectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists a projective object $ P$ and a surjective morphism $ f: P \to M$ .

DEFINITION 08.16   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is surjective.

DEFINITION 08.17   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is epic.

DEFINITION 08.18   Let $ (K^\bullet,d_K)$ , $ (L^\bullet, d_L)$ be complexes of objects of an additive category $ \mathcal{C}$ .
  1. A morphism of complex $ u:K^\bullet \to L^\bullet$ is a family

    $\displaystyle u^j: K^j \to L^j
$

    of morphisms in $ \mathcal{C}$ such that $ u$ commutes with $ d$ . That means,

    $\displaystyle u^{j+1} \circ d^j_K = d^j_K \circ u^j
$

    holds.
  2. A homotopy between two morphisms $ u,v: K^\bullet \to L\bullet$ of complexes is a family of morphisms

    $\displaystyle h^j: K^j \to L^{j-1}
$

    such that $ u-v = d \circ h + h \circ d$ holds.

LEMMA 08.19   Let $ \mathcal{C}$ be an abelian category that has enough injectives. Then:
  1. For any object $ M$ in $ \mathcal{C}$ , there exists an injective resolution of $ M$ . That means, there exists an complex $ I^\bullet$ and a morphism $ \iota_M:M \to I^0$ such that

    \begin{displaymath}
% latex2html id marker 1710H^j(I^\bullet)
=
\begin{cases}
...
...iota_M) &\text{ if } j=0 \\
0 &\text{ if } j\neq 0
\end{cases}\end{displaymath}

  2. For any morphism $ f:M\to N$ of $ \mathcal{C}$ , and for any injective resolutions $ (I^\bullet,\iota_M)$ , $ (J^\bullet,\iota_N)$ of $ M$ and $ N$ (respectively), There exists a morphism $ \bar f:I^\bullet \to J^\bullet$ of complexes which commutes with $ f$ . Forthermore, if there are two such morphisms $ \bar f$ and $ f'$ , then the two are homotopic.

DEFINITION 08.20   Let $ \mathcal{C}_1$ be an abelian category which has enough injectives. Let $ F: \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object $ M$ of $ \mathcal{C}_1$ we take an injective resolution $ I^\bullet_M$ of $ M$ and define

$\displaystyle R^i F(M)=H^i(I^\bullet_M).
$

and call it the derived functor of $ F$ .

LEMMA 08.21   The derived functor is indeed a functor.


next up previous
Next: Bibliography
2012-06-28