COMMUTATIVE ALGEBRA

YOSHIFUMI TSUCHIMOTO

08. Homological algebra

DEFINITION 8.1. Let R be a ring. A cochain complex of R-modules is a sequence of R-modules

 $C^{\bullet}:\ldots \stackrel{d^{n-1}}{\to} C^n \stackrel{d^n}{\to} C^{n+1} \stackrel{d^{n+1}}{\to} \ldots$

such that $d^n \circ d^{n-1} = 0$. The n-th cohomology of the cochain complex is defined to be the R-module

 $H^n(C^{\bullet}) = \operatorname{Ker}(d^n) / \operatorname{Image}(d^{n-1}).$

Elements of $\text{Ker}(d^n)$ (respectively, $\text{Image}(d^{n-1})$) are often referred to as **cocycles** (respectively, **coboundaries**).

DEFINITION 8.2. Let R be a ring.

(1) An *R*-module *I* is said to be **injective** if it satisfies the following condition: For any *R*-module homomorphism $f: M \to I$ and for any monic *R*-module homomorphism $\iota: N \to M, f$ "extends" to an *R*-module homomorphism $\hat{f}: M \to I$.

$$\begin{array}{cccc} M & \stackrel{f}{\longrightarrow} & I \\ & & & & \\ & & & & \\ & & & & \\ N & \stackrel{f}{\longrightarrow} & I \end{array}$$

(2) A *R*-module *P* is said to be **projective** if it satisfies the following condition: For any *R*-module homomorphism $f : P \to N$ and for any epic *R*-module homomorphism $\pi : M \to N$, f"lifts" to a morphism $\hat{f} : M \to I$.

$$\begin{array}{ccc} P & \stackrel{\widehat{f}}{\longrightarrow} & M \\ \\ \parallel & & \pi \\ P & \stackrel{f}{\longrightarrow} & N \end{array}$$

EXERCISE 8.1. Let R be a ring. Let

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

be an exact sequence of R-modules. Assume furthermore that M_3 is projective. Then show that the sequence

 $0 \to \operatorname{Hom}_{R}(N, M_{1}) \xrightarrow{\operatorname{Hom}_{R}(N, f)} \operatorname{Hom}_{R}(N, M_{2}) \xrightarrow{\operatorname{Hom}_{R}(N, g)} \operatorname{Hom}_{R}(N, M_{3}) \to 0$ is exact.

LEMMA 8.3. Let R be a (unital associative but not necessarily commutative) ring. Then for any R-module M, the following conditions are equivalent.

- (1) M is a direct summand of free modules.
- (2) M is projective

YOSHIFUMI TSUCHIMOTO

COROLLARY 8.4. For any ring R, the category (R-modules) of R-modules have enough projectives. That means, for any object $M \in (R$ -modules), there exists a projective object P and a surjective morphism $f: P \to M$.

DEFINITION 8.5. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

 $M \stackrel{r \times}{\to} M$

is surjective.

DEFINITION 8.6. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$M \xrightarrow{r \times} M$$

is epic.

LEMMA 8.7. Let R be a (commutative) principal ideal domain (PID). Then an R-module I is injective if and only if it is divisible.

PROPOSITION 8.8. For any (not necessarily commutative) ring R, the category (R-modules) of R-modules has enough injectives. That means, for any object $M \in (R$ -modules), there exists an injective object I and an monic morphism $f : M \to I$.

A bit of category theory:

DEFINITION 8.9. A category \mathcal{C} is a collection of the following data

- (1) A collection $Ob(\mathcal{C})$ of **objects** of \mathcal{C} .
- (2) For each pair of objects $X, Y \in Ob(\mathbb{C})$, a set

$$\operatorname{Hom}_{\mathfrak{C}}(X,Y)$$

of morphisms.

(3) For each triple of objects $X, Y, Z \in Ob(\mathbb{C})$, a map("composition (rule)")

$$\operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \to \operatorname{Hom}_{\mathfrak{C}}(X,Z)$$

satisfying the following axioms

- (1) $\operatorname{Hom}(X, Y) \cap \operatorname{Hom}(Z, W) = \emptyset$ unless (X, Y) = (Z, W).
- (2) (Existence of an identity) For any $X \in Ob(\mathcal{C})$, there exists an element $id_X \in Hom(X, X)$ such that

$$\operatorname{id}_X \circ f = f, \quad g \circ \operatorname{id}_X = g$$

holds for any $f \in \text{Hom}(S, X), g \in \text{Hom}(X, T) \ (\forall S, T \in \text{Ob}(\mathcal{C})).$

(3) (Associativity) For any objects $X, Y, Z, W \in Ob(\mathbb{C})$, and for any morphisms $f \in Hom(X, Y), g \in Hom(Y, Z), h \in Hom(Z, W)$, we have

$$(f \circ g) \circ h = f \circ (g \circ h).$$

Morphisms are the basic actor/actoress in category theory.

An additive category is a category in which one may "add" some morphisms.

DEFINITION 8.10. An additive category \mathcal{C} is said to be **abelian** if it satisfies the following axioms.

COMMUTATIVE ALGEBRA

- (A4-1) Every morphism $f : X \to Y$ in \mathcal{C} has a kernel ker $(f) : \text{Ker}(f) \to X$.
- (A4-2) Every morphism $f : X \to Y$ in \mathcal{C} has a cokernel coker $(f) : Y \to$ Coker(f).
- (A4-3) For any given morphism $f: X \to Y$, we have a suitably defined isomorphism

 $l : \operatorname{Coker}(\ker(f)) \cong \operatorname{Ker}(\operatorname{coker}(f))$

in C. More precisely, l is a morphism which is defined by the following relations:

 $\ker(\operatorname{coker}(f)) \circ \overline{f} = f \ (\exists \overline{f}), \quad \overline{f} = l \circ \operatorname{coker}(\ker(f)).$

DEFINITION 8.11. A (covariant) functor F from a category \mathcal{C} to a category \mathcal{D} consists of the following data:

- (1) An function which assigns to each object C of \mathcal{C} an object F(C) of \mathcal{D} .
- (2) An function which assigns to each morphism f of \mathcal{C} an morphism F(f) of \mathcal{D} .

The data must satisfy the following axioms:

(functor-1) $F(1_C) = 1_{F(C)}$ for any object C of C.

(functor-2) $F(f \circ g) = F(f) \circ F(g)$ for any composable morphisms f, g of \mathcal{C} .

By employing the following axiom instead of the axiom (functor-2) above, we obtain a definition of a **contravariant functor**:

(functor-2') $F(f \circ g) = F(g) \circ F(f)$ for any composable morphisms

DEFINITION 8.12. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call F additive if for any objects M, N in \mathcal{C}_1 ,

$$\operatorname{Hom}(M, N) \to \operatorname{Hom}(F(M), F(N))$$

is additive.

DEFINITION 8.13. Let F be an additive functor from an abelian category \mathcal{C}_1 to \mathcal{C}_2 .

(1) F is said to be **left exact** (respectively, **right exact**) if for any exact sequence

$$0 \to L \to M \to N \to 0,$$

the corresponding map

$$0 \to F(L) \to F(M) \to F(N)$$

(respectively,

$$F(L) \to F(M) \to F(N) \to 0$$

is exact

(2) F is said to be **exact** if it is both left exact and right exact.

LEMMA 8.14. Let R be a (unital associative but not necessarily commutative) ring. Then for any R-module M, the following conditions are equivalent.

- (1) M is a direct summand of free modules.
- (2) M is projective

YOSHIFUMI TSUCHIMOTO

COROLLARY 8.15. For any ring R, the category (R-modules) of R-modules have enough projectives. That means, for any object $M \in (R$ -modules), there exists a projective object P and a surjective morphism $f: P \to M$.

DEFINITION 8.16. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multiplication map

 $M \xrightarrow{r \times} M$

is surjective.

DEFINITION 8.17. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$M \xrightarrow{r \times} M$$

is epic.

DEFINITION 8.18. Let (K^{\bullet}, d_K) , (L^{\bullet}, d_L) be complexes of objects of an additive category \mathcal{C} .

(1) A morphism of complex $u: K^{\bullet} \to L^{\bullet}$ is a family

$$u^j: K^j \to L^j$$

of morphisms in \mathcal{C} such that u commutes with d. That means,

$$u^{j+1} \circ d_K^j = d_K^j \circ u^j$$

holds.

(2) A homotopy between two morphisms $u, v : K^{\bullet} \to L^{\bullet}$ of complexes is a family of morphisms

$$h^j: K^j \to L^{j-1}$$

such that $u - v = d \circ h + h \circ d$ holds.

LEMMA 8.19. Let C be an abelian category that has enough injectives. Then:

(1) For any object M in \mathbb{C} , there exists an injective resolution of M. That means, there exists an complex I^{\bullet} and a morphism $\iota_M: M \to I^0$ such that

$$H^{j}(I^{\bullet}) = \begin{cases} M \ (via \ \iota_{M}) & \text{if } j = 0\\ 0 & \text{if } j \neq 0 \end{cases}$$

(2) For any morphism $f : M \to N$ of \mathbb{C} , and for any injective resolutions $(I^{\bullet}, \iota_M), (J^{\bullet}, \iota_N)$ of M and N (respectively), There exists a morphism $\overline{f} : I^{\bullet} \to J^{\bullet}$ of complexes which commutes with f. Forthermore, if there are two such morphisms \overline{f} and f', then the two are homotopic.

DEFINITION 8.20. Let \mathcal{C}_1 be an abelian category which has enough injectives. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object M of \mathcal{C}_1 we take an injective resolution I_M^{\bullet} of M and define

$$R^i F(M) = H^i(I_M^{\bullet}).$$

and call it the derived functor of F.

LEMMA 8.21. The derived functor is indeed a functor.