COMMUTATIVE ALGEBRA

YOSHIFUMI TSUCHIMOTO

08. Homological algebra

DEFINITION 8.1. Let R be a ring. A cochain complex of Rmodules is a sequence of R-modules

 $C^{\bullet}: \ldots \stackrel{d^{n-1}}{\rightarrow} C^n \stackrel{d^n}{\rightarrow} C^{n+1} \stackrel{d^{n+1}}{\rightarrow} \ldots$

such that $d^n \circ d^{n-1} = 0$. The *n*-th **cohomology** of the cochain complex is defined to be the R-module

 $H^n(C^{\bullet}) = \text{Ker}(d^n)/\text{Image}(d^{n-1}).$

Elements of Ker (d^n) (respectively, Image (d^{n-1})) are often referred to as cocycles (respectively, coboundaries).

DEFINITION 8.2. Let R be a ring.

(1) An R -module I is said to be **injective** if it satisfies the following condition: For any R-module homomorphism $f : M \to I$ and for any monic R-module homomorphism $\iota: N \to M$, f "extends" to an R-module homomorphism $\hat{f}: M \to I$.

$$
M \xrightarrow{\hat{f}} I
$$

$$
\iota \uparrow \qquad \qquad \parallel
$$

$$
N \xrightarrow{f} I
$$

(2) A R-module P is said to be **projective** if it satisfies the following condition: For any R-module homomorphism $f: P \to N$ and for any epic R-module homomorphism $\pi : M \to N$, f "lifts" to a morphism $\hat{f}: M \to I$.

$$
\begin{array}{ccc}\nP & \xrightarrow{f} & M \\
\parallel & & \pi \downarrow \\
P & \xrightarrow{f} & N\n\end{array}
$$

EXERCISE 8.1. Let R be a ring. Let

$$
0 \to M_1 \to M_2 \to M_3 \to 0
$$

be an exact sequence of R-modules. Assume furthermore that M_3 is projective. Then show that the sequence

 $0 \to \text{Hom}_R(N,M_1) \stackrel{\text{Hom}_R(N,f)}{\to} \text{Hom}_R(N,M_2) \stackrel{\text{Hom}_R(N,g)}{\to} \text{Hom}_R(N,M_3) \to 0$ is exact.

Lemma 8.3. *Let* R *be a (unital associative but not necessarily commutative) ring. Then for any* R*-module* M*, the following conditions are equivalent.*

- (1) M *is a direct summand of free modules.*
- (2) M *is projective*

YOSHIFUMI TSUCHIMOTO

Corollary 8.4. *For any ring* R*, the category* (R -modules) *of* R*modules* have enough projectives. That means, for any object $M \in$ (R -modules)*, there exists a projective object* P *and a surjective morphism* $f: P \to M$.

DEFINITION 8.5. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

 $M \stackrel{r\times}{\to} M$

is surjective.

DEFINITION 8.6. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$
M \stackrel{r\times}{\to} M
$$

is epic.

Lemma 8.7. *Let* R *be a (commutative) principal ideal domain (PID). Then an* R*-module* I *is injective if and only if it is divisible.*

Proposition 8.8. *For any (not necessarily commutative) ring* R*, the category* (R -modules) *of* R*-modules* has enough injectives. *That means, for any object* $M \in (R$ -modules)*, there exists an injective object I* and an monic morphism $f : M \to I$.

A bit of category theory:

DEFINITION 8.9. A category C is a collection of the following data

- (1) A collection $Ob(\mathcal{C})$ of **objects** of \mathcal{C} .
- (2) For each pair of objects $X, Y \in Ob(\mathcal{C})$, a set

$$
\operatorname{Hom}_{\mathfrak{C}}(X,Y)
$$

of morphisms.

(3) For each triple of objects $X, Y, Z \in Ob(\mathcal{C})$, a map("composition (rule)")

$$
Hom_{\mathcal{C}}(X, Y) \times Hom_{\mathcal{C}}(Y, Z) \to Hom_{\mathcal{C}}(X, Z)
$$

satisfying the following axioms

- (1) Hom $(X, Y) \cap$ Hom $(Z, W) = \emptyset$ unless $(X, Y) = (Z, W)$.
- (2) (Existence of an identity) For any $X \in Ob(\mathcal{C})$, there exists an element $id_X \in Hom(X, X)$ such that

$$
id_X \circ f = f, \quad g \circ id_X = g
$$

holds for any $f \in \text{Hom}(S, X)$, $q \in \text{Hom}(X, T)$ $(\forall S, T \in \text{Ob}(\mathcal{C}))$.

(3) (Associativity) For any objects $X, Y, Z, W \in Ob(\mathcal{C})$, and for any morphisms $f \in \text{Hom}(X, Y), g \in \text{Hom}(Y, Z), h \in \text{Hom}(Z, W),$ we have

$$
(f \circ g) \circ h = f \circ (g \circ h).
$$

Morphisms are the basic actor/actoress in category theory.

An additive category is a category in which one may "add" some morphisms.

DEFINITION 8.10. An additive category $\mathcal C$ is said to be abelian if it satisfies the following axioms.

- (A4-1) Every morphism $f : X \to Y$ in C has a kernel ker(f) : Ker(f) \to X.
- (A4-2) Every morphism $f: X \to Y$ in C has a cokernel coker(f) : $Y \to Y$ $Coker(f)$.
- (A4-3) For any given morphism $f: X \to Y$, we have a suitably defined isomorphism

 $l : \mathrm{Coker}(\mathrm{ker}(f)) \cong \mathrm{Ker}(\mathrm{coker}(f))$

in C. More precisely, l is a morphism which is defined by the following relations:

 $\ker(\mathrm{coker}(f)) \circ \overline{f} = f(\exists \overline{f}), \quad \overline{f} = l \circ \mathrm{coker}(\ker(f)).$

DEFINITION 8.11. A (covariant) functor F from a category $\mathfrak C$ to a category D consists of the following data:

- (1) An function which assigns to each object C of C an object $F(C)$ of D.
- (2) An function which assigns to each morphism f of C an morphism $F(f)$ of \mathcal{D} .

The data must satisfy the following axioms:

(functor-1) $F(1_C) = 1_{F(C)}$ for any object C of C.

(functor-2) $F(f \circ g) = F(f) \circ F(g)$ for any composable morphisms f, g of C.

By employing the following axiom instead of the axiom (functor-2) above, we obtain a definition of a contravariant functor:

(functor-2') $F(f \circ g) = F(g) \circ F(f)$ for any composable morphisms

DEFINITION 8.12. Let $F: \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call F additive if for any objects M, N in \mathcal{C}_1 ,

$$
Hom(M, N) \to Hom(F(M), F(N))
$$

is additive.

DEFINITION 8.13. Let F be an additive functor from an abelian category \mathfrak{C}_1 to \mathfrak{C}_2 .

(1) \overline{F} is said to be **left** exact (respectively, **right** exact) if for any exact sequence

$$
0 \to L \to M \to N \to 0,
$$

the corresponding map

$$
0 \to F(L) \to F(M) \to F(N)
$$

(respectively,

$$
F(L) \to F(M) \to F(N) \to 0)
$$

is exact

(2) F is said to be **exact** if it is both left exact and right exact.

Lemma 8.14. *Let* R *be a (unital associative but not necessarily commutative) ring. Then for any* R*-module* M*, the following conditions are equivalent.*

- (1) M *is a direct summand of free modules.*
- (2) M *is projective*

YOSHIFUMI TSUCHIMOTO

Corollary 8.15. *For any ring* R*, the category* (R -modules) *of* R*-modules* have enough projectives. *That means, for any object* $M \in (R$ -modules), there exists a projective object P and a surjective *morphism* $f: P \to M$.

DEFINITION 8.16. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0 .)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

 $M \stackrel{r\times}{\to} M$

is surjective.

DEFINITION 8.17. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$
M \stackrel{r\times}{\to} M
$$

is epic.

DEFINITION 8.18. Let (K^{\bullet}, d_K) , (L^{\bullet}, d_L) be complexes of objects of an additive category C.

(1) A morphism of complex $u : K^{\bullet} \to L^{\bullet}$ is a family

$$
u^j: K^j \to L^j
$$

of morphisms in $\mathcal C$ such that u commutes with d. That means,

$$
u^{j+1} \circ d_K^j = d_K^j \circ u^j
$$

holds.

(2) A **homotopy** between two morphisms $u, v: K^{\bullet} \to L^{\bullet}$ of complexes is a family of morphisms

$$
h^j: K^j \to L^{j-1}
$$

such that $u - v = d \circ h + h \circ d$ holds.

Lemma 8.19. *Let* C *be an abelian category that has enough injectives. Then:*

(1) *For any object* M *in* C*, there exists an* injective resolution *of* M*. That means, there exists an complex* I • *and a morphism* $\iota_M : M \to I^0$ such that

$$
H^j(I^{\bullet}) = \begin{cases} M \ (via \ \iota_M) & \text{ if } j = 0 \\ 0 & \text{ if } j \neq 0 \end{cases}
$$

(2) For any morphism $f : M \rightarrow N$ of C, and for any injective *resolutions* (I^{\bullet}, ι_M) , (J^{\bullet}, ι_N) *of* M *and* N *(respectively), There* exists a morphism $\bar{f}: I^{\bullet} \to J^{\bullet}$ of complexes which commutes *with* f. Forthermore, if there are two such morphisms \overline{f} and f ′ *, then the two are homotopic.*

DEFINITION 8.20. Let C_1 be an abelian category which has enough injectives. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object M of \mathcal{C}_1 we take an injective resolution I_M^{\bullet} of \tilde{M} and define

$$
R^i F(M) = H^i(I_M^{\bullet}).
$$

and call it the derived functor of F.

Lemma 8.21. *The derived functor is indeed a functor.*