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08. Homological algebra

Definition 8.1. Let R be a ring. A cochain complex of R-
modules is a sequence of R-modules

C• : . . .
dn−1

→ Cn dn

→ Cn+1 dn+1

→ . . .

such that dn◦dn−1 = 0 . The n-th cohomology of the cochain complex
is defined to be the R-module

Hn(C•) = Ker(dn)/ Image(dn−1).

Elements of Ker(dn) (respectively, Image(dn−1)) are often referred to
as cocycles (respectively, coboundaries).

Definition 8.2. Let R be a ring.

(1) An R-module I is said to be injective if it satisfies the follow-
ing condition: For any R-module homomorphism f : M → I
and for any monic R-module homomorphism ι : N → M , f
“extends” to an R-module homomorphism f̂ : M → I.
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(2) A R-module P is said to be projective if it satisfies the follow-
ing condition: For any R-module homomorphism f : P → N
and for any epic R-module homomorphism π : M → N , f
“lifts” to a morphism f̂ : M → I.
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Exercise 8.1. Let R be a ring. Let

0 → M1 → M2 → M3 → 0

be an exact sequence of R-modules. Assume furthermore that M3 is
projective. Then show that the sequence

0 → HomR(N,M1)
HomR(N,f)

→ HomR(N,M2)
HomR(N,g)

→ HomR(N,M3) → 0

is exact.

Lemma 8.3. Let R be a (unital associative but not necessarily com-
mutative) ring. Then for any R-module M , the following conditions
are equivalent.

(1) M is a direct summand of free modules.
(2) M is projective



YOSHIFUMI TSUCHIMOTO

Corollary 8.4. For any ring R, the category (R -modules) of R-
modules have enough projectives. That means, for any object M ∈
(R -modules), there exists a projective object P and a surjective mor-
phism f : P → M .

Definition 8.5. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is surjective.

Definition 8.6. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is epic.

Lemma 8.7. Let R be a (commutative) principal ideal domain (PID).
Then an R-module I is injective if and only if it is divisible.

Proposition 8.8. For any (not necessarily commutative) ring R,
the category (R -modules) of R-modules has enough injectives. That
means, for any objectM ∈ (R -modules), there exists an injective object
I and an monic morphism f : M → I.

A bit of category theory:

Definition 8.9. A category C is a collection of the following data

(1) A collection Ob(C) of objects of C.
(2) For each pair of objects X, Y ∈ Ob(C), a set

HomC(X, Y )

of morphisms.
(3) For each triple of objects X, Y, Z ∈ Ob(C), a map(“composition

(rule)”)

HomC(X, Y )×HomC(Y, Z) → HomC(X,Z)

satisfying the following axioms

(1) Hom(X, Y ) ∩Hom(Z,W ) = ∅ unless (X, Y ) = (Z,W ).
(2) (Existence of an identity) For any X ∈ Ob(C), there exists an

element idX ∈ Hom(X,X) such that

idX ◦f = f, g ◦ idX = g

holds for any f ∈ Hom(S,X), g ∈ Hom(X, T ) (∀S, T ∈ Ob(C)).
(3) (Associativity) For any objectsX, Y, Z,W ∈ Ob(C), and for any

morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, Z), h ∈ Hom(Z,W ),
we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Morphisms are the basic actor/actoress in category theory.
An additive category is a category in which one may “add” some

morphisms.

Definition 8.10. An additive category C is said to be abelian if it
satisfies the following axioms.
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(A4-1) Every morphism f : X → Y in C has a kernel ker(f) : Ker(f) →
X .

(A4-2) Every morphism f : X → Y in C has a cokernel coker(f) : Y →
Coker(f).

(A4-3) For any given morphism f : X → Y , we have a suitably defined
isomorphism

l : Coker(ker(f)) ∼= Ker(coker(f))

in C. More precisely, l is a morphism which is defined by the
following relations:

ker(coker(f)) ◦ f = f (∃f), f = l ◦ coker(ker(f)).

Definition 8.11. A (covariant) functor F from a category C to a
category D consists of the following data:

(1) An function which assigns to each object C of C an object F (C)
of D.

(2) An function which assigns to each morphism f of C an mor-
phism F (f) of D.

The data must satisfy the following axioms:

(functor-1) F (1C) = 1F (C) for any object C of C.
(functor-2) F (f ◦ g) = F (f) ◦ F (g) for any composable morphisms f, g of

C.

By employing the following axiom instead of the axiom (functor-2)
above, we obtain a definition of a contravariant functor:
(functor-2′) F (f ◦ g) = F (g) ◦ F (f) for any composable morphisms

Definition 8.12. Let F : C1 → C2 be a functor between additive
categories. We call F additive if for any objects M,N in C1,

Hom(M,N) → Hom(F (M), F (N))

is additive.

Definition 8.13. Let F be an additive functor from an abelian
category C1 to C2.

(1) F is said to be left exact (respectively, right exact ) if for
any exact sequence

0 → L → M → N → 0,

the corresponding map

0 → F (L) → F (M) → F (N)

(respectively,

F (L) → F (M) → F (N) → 0)

is exact
(2) F is said to be exact if it is both left exact and right exact.

Lemma 8.14. Let R be a (unital associative but not necessarily com-
mutative) ring. Then for any R-module M , the following conditions
are equivalent.

(1) M is a direct summand of free modules.
(2) M is projective
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Corollary 8.15. For any ring R, the category (R -modules) of
R-modules have enough projectives. That means, for any object
M ∈ (R -modules), there exists a projective object P and a surjective
morphism f : P → M .

Definition 8.16. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is surjective.

Definition 8.17. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is epic.

Definition 8.18. Let (K•, dK), (L
•, dL) be complexes of objects of

an additive category C.

(1) A morphism of complex u : K• → L• is a family

uj : Kj → Lj

of morphisms in C such that u commutes with d. That means,

uj+1 ◦ djK = djK ◦ uj

holds.
(2) A homotopy between two morphisms u, v : K• → L• of com-

plexes is a family of morphisms

hj : Kj → Lj−1

such that u− v = d ◦ h+ h ◦ d holds.

Lemma 8.19. Let C be an abelian category that has enough injectives.
Then:

(1) For any object M in C, there exists an injective resolution

of M . That means, there exists an complex I• and a morphism
ιM : M → I0 such that

Hj(I•) =

{

M (via ιM) if j = 0

0 if j 6= 0

(2) For any morphism f : M → N of C, and for any injective
resolutions (I•, ιM), (J•, ιN) of M and N (respectively), There
exists a morphism f̄ : I• → J• of complexes which commutes
with f . Forthermore, if there are two such morphisms f̄ and
f ′, then the two are homotopic.

Definition 8.20. Let C1 be an abelian category which has enough
injectives. Let F : C1 → C2 be a left exact functor to an abelian
category. Then for any object M of C1 we take an injective resolution
I•M of M and define

RiF (M) = H i(I•M).

and call it the derived functor of F .

Lemma 8.21. The derived functor is indeed a functor.


