next up previous
Next: Bibliography

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{Smoothness}

Let us recall the universality of polynomial algebras.

PROPOSITION 08.1   Let $ A$ be a commutative ring. Let $ B$ be an $ A$ -algebra. That means, we assume that there is given a specific homomorphism (called the structure homomorphism) $ \iota: A\to B$ . Then for any family $ \{b_\lambda\}_{\lambda \in \Lambda}$ of elements of $ B$ , there exists a unique ring homomorphism

$\displaystyle \varphi:A[\{X_\lambda\}_{\lambda \in \Lambda}] \to B
$

such that $ \varphi\vert _A=\iota$ and $ \varphi(X_\lambda)=b_\lambda$ for all $ \lambda \in \Lambda$ .

As a corollary, we see:

PROPOSITION 08.2   Let $ A$ be a commutative ring. Then any polynomial algebra $ A[\{X_\lambda\}_{\lambda \in \Lambda}$ is 0-smooth over $ A$ .

LEMMA 08.3   Let $ A$ be a ring. Let $ B$ be an $ A$ -algebra. Let $ I$ be a finitely generated ideal of $ B$ . Let us denote by $ \hat B=\varprojlim (B/I^n)$ (respectively, $ \hat I$ ) the completion of $ B$ (respectively, $ I$ ) with respect to the $ I$ -adic topology. Then $ B$ is $ I$ -smooth over $ A$ if and only if $ \hat B$ is $ \hat I$ -smooth over $ A$ .

PROOF.. $ B/I^n \cong \hat B/ \hat I^n$ for any $ n$ .

% latex2html id marker 738
$ \qedsymbol$

COROLLARY 08.4   Let $ A$ be a ring. Then $ A[[X_1,X_2,\dots, X_n]]$ is $ I$ -smooth over $ A$ for $ I=\sum_{i=1}^n X_i A[[X_1,X_2,\dots, X_n]]$ .

Note. In general, $ A[[X]]$ is not 0 -smooth over $ A$ . See [1] and the literatures cited there.

THEOREM 08.5   Let $ A$ be a ring. Let $ B$ be an $ A$ -algebra with an ideal $ I$ . If $ B/I$ is 0 -smooth over $ A$ , then the sequence (which appears in Lemma 04.2)

$\displaystyle 0\to I/I^2
\to
\Omega^1_{B/A}\otimes (B/I)
\to \Omega^1_{B/I} \to 0
$

is split exact.

The following theorem says that the converse is true if the ring $ B$ is 0 -smooth.

THEOREM 08.6   Let $ A$ be a ring. Let $ B$ be an $ A$ -algebra with an ideal $ I$ . Assume $ B$ is 0 -smooth over $ A$ . If the exact sequence

$\displaystyle 0\to I/I^2
\to
\Omega^1_{B/A}\otimes (B/I)
\to \Omega^1_{B/I} \to 0
$

is split exact, then $ B/I$ is 0 -smooth over $ A$ .


next up previous
Next: Bibliography
2011-07-21