
COMMUTATIVE ALGEBRA

YOSHIFUMI TSUCHIMOTO

01.Review of elementary definitions on modules.

Definition 1.1. A (unital associative) ring is a set R equipped
with two binary operations (addition (“+”) and multiplication (“·”))
such that the following axioms are satisfied.

(Ring-1) R is an additive group with respect to the addition.
(Ring-2) distributive law holds. Namely, we have

a(b+ c) = ab+ bc, (a+ b)c = ac+ bc (∀a, ∀b, ∀c ∈ R).

(Ring-3) The multiplcation is associative.
(Ring-4) R has a multiplicative unit.

In this lectuer we are mainly interested in commutative rings, that
means, rings on which the multiplication satisfies the commutativity
law.
For any ring R, we denote by 0R (respectively, 1R) the zero element

of R (respectively, the unit element of R). Namely, 0R and 1R are
elements of R characterized by the following rules.

• a + 0R = a, 0R + a = a ∀a ∈ R.
• a · 1R = a, 1R · a = a ∀a ∈ R.

When no confusion arises, we omit the subscript ‘R’ and write 0, 1
instead of 0R, 1R.

Definition 1.2. A map R → S from a unital associative ring R to
another unital associative ring S is said to be ring homomorphism

if it satisfies the following conditions.

(Ringhom-1) f(a+ b) = f(a) + f(b)
(Ringhom-2) f(ab) = f(a)f(b)
(Ringhom-3) f(1R) = 1S

Definition 1.3. Let R be a unital associative ring. An R-module

M is an additive group M with R-action

R ×M → M

which satisfies

(Mod-1) (r1r2).m = r1.(r2.m) (∀r1, ∀r2 ∈ R, ∀m ∈ M)
(Mod-2) 1.m = m (∀m ∈ M)
(Mod-3) (r1 + r2).m = r1.m+ r2.m (∀r1, ∀r2 ∈ R, ∀m ∈ M).
(Mod-4) r.(m1 +m2) = r.m1 + r.m2 (∀r ∈ R, ∀m1, ∀m2 ∈ M).

Example 1.4. Let us give some examples of R-modules.

(1) If k is a field, then the concepts “k-vector space” and “k-
module” are identical.

(2) Every abelian group is a module over the ring of integers Z in
a unique way.

1



2 YOSHIFUMI TSUCHIMOTO

Definition 1.5. Let M,N be modules over a ring R. Then a map
f : M → N is called an R-module homomorphism if it is additive
and preserves the R-action.
The set of all module homomorphisms from M to N is denoted by

HomR(M,N). It has an structure of an module in an obvious manner.
Furthermore, when R is a commutative ring, then it has a structure of
an R-module.

Definition 1.6. An subset M of an R-module N is said to be an
R-submodule of N if M itself is an R-module and the inclusion map
j : M → N is an R-module homomorphism.

Definition 1.7. An subset N of an R-module M is said to be an
R-submodule of M if N itself is an R-module and the inclusion map
j : N → M is an R-module homomorphism.

Definition 1.8. Let R be a ring. Let N be an R-submodule of an
R-module M . Then we may define the quotient M/N by

M/N = M/ ∼N

where the equivalence relation ∼N is defined as follows:

m1 ∼N m2 ⇐⇒ m1 −m2 ∈ N.

It may be shown that the quotient M/N so defined is actually an R-
module and that the natural projection

π : M → M/N

is an R-module homomorphism.

Definition 1.9. Let f : M → N be an R-module homomorphism
between R-modules. Then we define its kernel as follows.

Ker(f) = f−1(0) = {m ∈ M ; f(m) = 0}.

The kernel and the image of an R-module homomorphism f are R-
modules.

Theorem 1.10. Let f : M → N be an R-module homomorphism
between R-modules. Then

M/Ker(f) ∼= f(N).

Definition 1.11. Let R be a ring. An “sequence”

M1

f
→ M2

g
→ M3

is said to be an exact sequence of R-modules if the following con-
ditions are satisfied

(Exact1) M1,M2 are R-modules.
(Exact2) f, g are R-module homomorphisms.
(Exact3) Ker(g) = Image(f).

For any R-submodule N of an R-module M , we have the following
exact sequence.

0 → N → M → M/N → 0

Exercise 1.1. Compute the following modules.

(1) HomZ(Z/3Z,Z).
(2) HomZ(Q,Z).
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(3) HomZ(Q,Z/5Z).

Definition 1.12. Let A be an associative unital (but not necessarily
commutative) ring. Let L be a right A-module. Let M be a left A-
module. For any (Z-)module N , an map

ϕ : L×M → N

is called an A-balanced biadditive map if

(1) ϕ(x1 + x2, y) = ϕ(x1, y) + ϕ(x2, y) (∀x1, ∀x2 ∈ L, ∀y ∈ M).
(2) ϕ(x, y1 + y2) = ϕ(x, y1) + ϕ(x, y2) (∀x ∈ L, ∀y1, ∀y2 ∈ M).
(3) ϕ(xa, y) = ϕ(x, ay) (∀x ∈ L, ∀y ∈ M, ∀a ∈ A).

Proposition 1.13. Let A be an associative unital (but not neces-
sarily commutative) ring. Then for any right A-module L and for any
left A-module M , there exists a (Z-)module XL,M together with a A-
balanced map

ϕ0 : L×M → XL,M

which is universal amoung A-balanced maps.

Definition 1.14. We employ the assumption of the proposition
above. By a standard argument on universal objects, we see that such
object is unique up to a unique isomorphism. We call it the tensor

product of L and M and denote it by

L⊗A M.

Lemma 1.15. Let A be an associative unital ring. Then:

(1) A⊗A M ∼= M .
(2) (L1 ⊕ L2)⊗A M ∼= (L1 ⊗M)⊕ (L2 ⊗A M).
(3) For any left A-module M , the functor L 7→ L ⊗A M is a right

exact functor. Namely, for any exact sequence

0 → L1 → L2 → L3 → 0,

the sequence

L1 ⊗A M → L2 ⊗A M → L3 ⊗A M → 0,

is also exact.
(4) For any right ideal J of A and for any A-module M , we have

(A/J)⊗A M ∼= M/J.M

In particular, if the ring A is commutative, then for any ideals I, J of
A, we have

(A/I)⊗A (A/J) ∼= A/(I + J)

Exercise 1.2. Compute (Z/3Z)⊗Z (Z/4Z) and Q⊗Z (Z/3Z).

Definition 1.16. A left A-module M is said to be flat if L 7→
L⊗A M is an exact functor. Namely, for any exact sequence

0 → L1 → L2 → L3 → 0,

of left A-modules, the sequence

0 → L1 ⊗A M → L2 ⊗A M → L3 ⊗A M → 0,

is also exact.
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**The following two facts may give some intuitive idea of what flat-
ness means.

Theorem 1.17. If A is a Noetherian ring and M is a finitely-
generated R-module, then M is flat over A if and only if the associated
sheaf M̃ on Spec(A) is locally free.

Theorem 1.18. [1, Theorem 23.1+Theorem 15.1] Let (A,mA) be a
regular local ring. Let (B,mB) be a Cohen-Macaulay local ring. Let
ϕ : A → B be a local ring homomorphism.We set

F = B ⊗A k(mA) = B/mAB

for the fiber ring of ϕ over mA. Then an equality

dimB = dimA+ dimF

holds if and only if B is flat over A.

**
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