COMMUTATIVE ALGEBRA

YOSHIFUMI TSUCHIMOTO

01.Review of elementary definitions on modules.

DEFINITION 1.1. A (unital associative) ring is a set R equipped with two binary operations (addition $(*")$ and multiplication $(*")$) such that the following axioms are satisfied.

(Ring-1) R is an additive group with respect to the addition. (Ring-2) distributive law holds. Namely, we have

$$
a(b+c) = ab + bc, \quad (a+b)c = ac + bc \qquad (\forall a, \forall b, \forall c \in R).
$$

(Ring-3) The multiplcation is associative.

(Ring-4) R has a multiplicative unit.

In this lectuer we are mainly interested in commutative rings, that means, rings on which the multiplication satisfies the commutativity law.

For any ring R, we denote by 0_R (respectively, 1_R) the zero element of R (respectively, the unit element of R). Namely, 0_R and 1_R are elements of R characterized by the following rules.

- $a + 0_R = a$, $0_R + a = a \ \forall a \in R$.
- $a \cdot 1_R = a$, $1_R \cdot a = a \; \forall a \in R$.

When no confusion arises, we omit the subscript R and write 0, 1 instead of 0_R , 1_R .

DEFINITION 1.2. A map $R \to S$ from a unital associative ring R to another unital associative ring S is said to be ring homomorphism if it satisfies the following conditions.

(Ringhom-1) $f(a + b) = f(a) + f(b)$ (Ringhom-2) $f(ab) = f(a)f(b)$ (Ringhom-3) $f(1_R) = 1_S$

> DEFINITION 1.3. Let R be a unital associative ring. An R-module M is an additive group M with R-action

$$
R \times M \to M
$$

which satisfies

(Mod-1) $(r_1r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$ $(\forall r_1, \forall r_2 \in R, \forall m \in M)$ (Mod-2) $1.m = m$ ($\forall m \in M$) (Mod-3) $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$ $(\forall r_1, \forall r_2 \in R, \forall m \in M).$ (Mod-4) $r.(m_1 + m_2) = r.m_1 + r.m_2$ ($\forall r \in R$, $\forall m_1, \forall m_2 \in M$).

EXAMPLE 1.4. Let us give some examples of R -modules.

- (1) If k is a field, then the concepts "k-vector space" and "kmodule" are identical.
- (2) Every abelian group is a module over the ring of integers $\mathbb Z$ in a unique way.

DEFINITION 1.5. Let M, N be modules over a ring R. Then a map $f: M \to N$ is called an R-module homomorphism if it is additive and preserves the R-action.

The set of all module homomorphisms from M to N is denoted by $\text{Hom}_R(M, N)$. It has an structure of an module in an obvious manner. Furthermore, when R is a commutative ring, then it has a structure of an R-module.

DEFINITION 1.6. An subset M of an R-module N is said to be an R-submodule of N if M itself is an R-module and the inclusion map $j: M \to N$ is an R-module homomorphism.

DEFINITION 1.7. An subset N of an R -module M is said to be an R-submodule of M if N itself is an R -module and the inclusion map $j: N \to M$ is an R-module homomorphism.

DEFINITION 1.8. Let R be a ring. Let N be an R-submodule of an R-module M. Then we may define the **quotient** M/N by

$$
M/N = M/\sim_N
$$

where the equivalence relation \sim_N is defined as follows:

$$
m_1 \sim_N m_2 \quad \iff \quad m_1 - m_2 \in N.
$$

It may be shown that the quotient M/N so defined is actually an R module and that the natural projection

$$
\pi : M \to M/N
$$

is an R-module homomorphism.

DEFINITION 1.9. Let $f : M \to N$ be an R-module homomorphism between R-modules. Then we define its kernel as follows.

$$
Ker(f) = f^{-1}(0) = \{ m \in M; f(m) = 0 \}.
$$

The kernel and the image of an R-module homomorphism f are R modules.

THEOREM 1.10. Let $f : M \to N$ be an R-module homomorphism *between* R*-modules. Then*

$$
M/\operatorname{Ker}(f) \cong f(N).
$$

DEFINITION 1.11. Let R be a ring. An "sequence"

$$
M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3
$$

is said to be an exact sequence of R -modules if the following conditions are satisfied

(Exact1) M_1, M_2 are R-modules.

(Exact2) f, g are R-module homomorphisms.

 $(Exact3) \; Ker(g) = Image(f).$

For any R-submodule N of an R-module M , we have the following exact sequence.

$$
0 \to N \to M \to M/N \to 0
$$

EXERCISE 1.1. Compute the following modules.

 (1) Hom_{$\mathbb{Z}(\mathbb{Z}/3\mathbb{Z}, \mathbb{Z})$.}

 (2) Hom_{$\mathbb{Z}(\mathbb{Q},\mathbb{Z})$.}

(3) Hom_{$\mathbb{Z}(\mathbb{Q}, \mathbb{Z}/5\mathbb{Z})$.}

DEFINITION 1.12. Let A be an associative unital (but not necessarily commutative) ring. Let L be a right A-module. Let M be a left A module. For any $(\mathbb{Z}-)$ module N, an map

$$
\varphi: L \times M \to N
$$

is called an A-balanced biadditive map if

$$
(1) \ \varphi(x_1 + x_2, y) = \varphi(x_1, y) + \varphi(x_2, y) \quad (\forall x_1, \forall x_2 \in L, \forall y \in M).
$$

(2) $\varphi(x, y_1 + y_2) = \varphi(x, y_1) + \varphi(x, y_2) \quad (\forall x \in L, \forall y_1, \forall y_2 \in M).$ (3) $\varphi(xa, y) = \varphi(x, ay)$ $(\forall x \in L, \forall y \in M, \forall a \in A).$

Proposition 1.13. *Let* A *be an associative unital (but not necessarily commutative) ring. Then for any right* A*-module* L *and for any* left A-module M, there exists a $(\mathbb{Z}-)$ module $X_{L,M}$ together with a A*balanced map*

$$
\varphi_0: L \times M \to X_{L,M}
$$

which is universal amoung A*-balanced maps.*

DEFINITION 1.14. We employ the assumption of the proposition above. By a standard argument on universal objects, we see that such object is unique up to a unique isomorphism. We call it the tensor **product** of L and M and denote it by

$$
L\otimes_A M.
$$

Lemma 1.15. *Let* A *be an associative unital ring. Then:*

- (1) $A \otimes_A M \cong M$.
- (2) $(L_1 \oplus L_2) \otimes_A M \cong (L_1 \otimes M) \oplus (L_2 \otimes_A M).$
- (3) For any left A-module M, the functor $L \mapsto L \otimes_A M$ is a right *exact functor. Namely, for any exact sequence*

$$
0 \to L_1 \to L_2 \to L_3 \to 0,
$$

the sequence

$$
L_1 \otimes_A M \to L_2 \otimes_A M \to L_3 \otimes_A M \to 0,
$$

is also exact.

(4) *For any right ideal* J *of* A *and for any* A*-module* M*, we have*

 $(A/J) \otimes_A M \cong M/J.M$

In particular, if the ring A *is commutative, then for any ideals* I, J *of* A*, we have*

$$
(A/I) \otimes_A (A/J) \cong A/(I+J)
$$

EXERCISE 1.2. Compute $(\mathbb{Z}/3\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/4\mathbb{Z})$ and $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/3\mathbb{Z})$.

DEFINITION 1.16. A left A-module M is said to be flat if $L \mapsto$ $L \otimes_A M$ is an exact functor. Namely, for any exact sequence

$$
0 \to L_1 \to L_2 \to L_3 \to 0,
$$

of left A-modules, the sequence

$$
0 \to L_1 \otimes_A M \to L_2 \otimes_A M \to L_3 \otimes_A M \to 0,
$$

is also exact.

**The following two facts may give some intuitive idea of what flatness means.

THEOREM 1.17. If A *is a Noetherian ring and* M *is a finitelygenerated* R*-module, then* M *is flat over* A *if and only if the associated sheaf* \tilde{M} *on* $Spec(A)$ *is locally free.*

THEOREM 1.18. [1, Theorem 23.1+Theorem 15.1] *Let* (A, \mathfrak{m}_A) *be a regular local ring. Let* (B, \mathfrak{m}_B) *be a Cohen-Macaulay local ring. Let* $\varphi: A \to B$ *be a local ring homomorphism. We set*

 $F = B \otimes_A k(\mathfrak{m}_A) = B/\mathfrak{m}_A B$

for the fiber ring of φ *over* \mathfrak{m}_A *. Then an equality*

 $\dim B = \dim A + \dim F$

holds if and only if B *is flat over* A*.*

**

REFERENCES

[1] H. Matsumura, Commutative ring theory, Cambridge university press, 1986.