COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

07. Ext as a derived functor We recommend the book of Lang [1] as a good reference. The treatment here follows the book for the most part.

THEOREM 7.1. Let C_1 be an abelian category with enough injectives, and let $F : C_1 \to C_2$ be a covariant additive left functor to another abelian category C_2 . Then:

- (1) $F \cong R^0 F$.
- (2) For each short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

and for each $n \ge 0$ there is a natural homomorphism

$$\delta^n : R^n F(M'') \to R^{n+1} F(M)$$

such that we obtain a long exact sequence

$$\cdots \to R^n F(M') \to R^n F(M) \to R^n F(M'') \xrightarrow{\delta^n} R^{n+1} F(M') \to \dots$$

(3) δ is natural. That means, for a morphism of short exact sequences

the δ 's give a commutative diagram:

(4) For each injective objective object I of A and for each n > 0 we have $R^n F(I)$.

The collection $\{R^{j}F\}$ of functors $R^{j}F$ is a "universal delta functor". See [1].

LEMMA 7.2. Under the assumption of the previous theorem, for any exact sequence $0 \to M' \to M \to M'' \to 0$ of objects in \mathcal{C}_1 , there exists injective resolutions $I_{M'}, I_M, I_{M''}$ of M', M, M'' respectively and a commutative diagram

such that the diagram of resolutions is exact. Thus we obtain a diagram

such that each row in the last line is exact.

Note that j-th cohomology of the complex $F(I_M)$ (respectively, $F(I_{M'}), F(I_{M''})$) gives the $R^{j}F(M)$ (respectively, $(R^{j}F(M'), R^{j}F(M''))$) Using the resolution given in the lemma above, we may prove Theorem 7.1. Let us describe the map δ in more detail when \mathcal{C}_2 is a category of modules by "diagram chasing". Namely, for $x \in R^n(M'')$, let us show how to compute $\delta(x)$.

- (1) $x \in R^n(M'')$ may be represented as a class $[c_x]$ of a cocycle $c_x \in \operatorname{Ker}(d: F(I_{M''}^n) \to F(I_{M''}^{n+1})).$ (2) We take a "lift" $\tilde{c}_x \in F(I_M^n)$ such that $\beta^n(\tilde{c}_x) = c_x$. Note that
- \tilde{c}_x is no longer a cocycle.
- (3) Consider $e_x = d\tilde{c}_x \in F(I^{n+1}M)$. It is a coboundary and we have $\beta(e_x) = 0$.
- (4) There thus exists an element $a_x \in F(I_{M'}^n)$ such that $\alpha(a_x) = e_x$. a_x is no longer a coboundary but it is a cocycle.
- (5) The cohomology class $[a_x]$ of a_x is the required $\delta(x)$.

Such computation appears frequently when we deal with cohomologies.

DEFINITION 7.3. Let A be a ring. Let M, N be A-modules. Then an **extension** of N by M is a module L with a exact sequence

(E)
$$0 \to N \xrightarrow{\alpha} L \xrightarrow{\beta} M \to 0.$$

of A-modules. Let

$$0 \to N \xrightarrow{\alpha'} L' \xrightarrow{\beta'} M \to 0$$

be another extension. Then the two extensions are said to be isomorphic if there exists a commutative diagram

PROPOSITION 7.4. There exists a bijection between the isomorphism classs of the extensions and elements of the $\operatorname{Ext}^{1}_{A}(M, N)$. The bijection is given by corresponding the extension (E) to the class $\delta(1_N) \in$ $\operatorname{Ext}^{1}(M, N)$ of the identity map 1_{N} by δ associated to the exact sequence (E).

See [1, XX, Exercise 27]

References

[1] S. Lang, Algebra (graduate texts in mathematics), Springer Verlag, 2002.