COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

05. projective and injective modules

DEFINITION 5.1. A (covariant) functor F from a category $\mathfrak C$ to a category D consists of the following data:

- (1) An function which assigns to each object C of C an object $F(C)$ of D.
- (2) An function which assigns to each morphism f of $\mathcal C$ an morphism $F(f)$ of \mathcal{D} .

The data must satisfy the following axioms:

\n
$$
F(1_C) = 1_{F(C)}
$$
 for any object C of C .
\n $F(\text{functor-2}) = F(f) \circ F(g)$ for any composable morphisms f, g of C .
\n C .\n

By employing the following axiom instead of the axiom (functor-2) above, we obtain a definition of a contravariant functor:

(functor-2') $F(f \circ g) = F(g) \circ F(f)$ for any composable morphisms

DEFINITION 5.2. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call F additive if for any objects M, N in \mathcal{C}_1 ,

$$
Hom(M, N) \to Hom(F(M), F(N))
$$

is additive.

DEFINITION 5.3. Let F be an additive functor from an abelian category \mathfrak{C}_1 to \mathfrak{C}_2 .

(1) F is said to be **left** exact (respectively, **right** exact) if for any exact sequence

$$
0 \to L \to M \to N \to 0,
$$

the corresponding map

$$
0 \to F(L) \to F(M) \to F(N)
$$

(respectively,

$$
F(L) \to F(M) \to F(N) \to 0)
$$

is exact

(2) \vec{F} is said to be **exact** if it is both left exact and right exact.

Lemma 5.4. *Let* R *be a (unital associative but not necessarily commutative) ring. Then for any* R*-module* M*, the following conditions are equivalent.*

- (1) M *is a direct summand of free modules.*
- (2) M *is projective*

Corollary 5.5. *For any ring* R*, the category* (R -modules) *of* R*modules* have enough projectives. That means, for any object $M \in$ (R -modules)*, there exists a projective object* P *and a surjective morphism* $f: P \to M$.

DEFINITION 5.6. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$
M \stackrel{r\times}{\to} M
$$

is surjective.

DEFINITION 5.7. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An R-module M is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

$$
M \stackrel{r\times}{\to} M
$$

is epic.

DEFINITION 5.8. Let (K^{\bullet}, d_K) , (L^{\bullet}, d_L) be complexes of objects of an additive category C.

(1) A morphism of complex $u : K^{\bullet} \to L^{\bullet}$ is a family

$$
u^j: K^j \to L^j
$$

of morphisms in $\mathcal C$ such that u commutes with d. That means,

$$
u^{j+1} \circ d_K^j = d_K^j \circ u^j
$$

holds.

(2) A homotopy between two morphisms $u, v : K^{\bullet} \to L^{\bullet}$ of complexes is a family of morphisms

$$
h^j: K^j \to L^{j-1}
$$

such that $u - v = d \circ h + h \circ d$ holds.

Lemma 5.9. *Let* C *be an abelian category that has enough injectives. Then:*

(1) *For any object* M *in* C*, there exists an* injective resolution *of* M*. That means, there exists an complex* I • *and a morphism* $\iota_M : M \to I^0$ such that

$$
H^{j}(I^{\bullet}) = \begin{cases} M \ (via \ \iota_M) & \text{if } j = 0 \\ 0 & \text{if } j \neq 0 \end{cases}
$$

(2) For any morphism $f : M \to N$ of C, and for any injective *resolutions* (I^{\bullet}, ι_M) , (J^{\bullet}, ι_N) *of* M *and* N *(respectively), There* exists a morphism $\bar{f}: I^{\bullet} \to J^{\bullet}$ of complexes which commutes *with* f. Forthermore, if there are two such morphisms \bar{f} and f ′ *, then the two are homotopic.*

DEFINITION 5.10. Let C_1 be an abelian category which has enough injectives. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object M of \mathcal{C}_1 we take an injective resolution I_M^{\bullet} of \tilde{M} and define

$$
R^i F(M) = H^i(I_M^{\bullet}).
$$

and call it the derived functor of F.

Lemma 5.11. *The derived functor is indeed a functor.*