next up previous
Next: Bibliography

Cohomologies.

Yoshifumi Tsuchimoto

\fbox{04. projective and injective modules}

LEMMA 04.1   Let $ R$ be a (unital associative but not necessarily commutative) ring. Then for any $ R$ -module $ M$ , the following conditions are equivalent.
  1. $ M$ is a direct summand of free modules.
  2. $ M$ is projective

COROLLARY 04.2   For any ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules have enough projectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists a projective object $ P$ and a surjective morphism $ f: P \to M$ .

DEFINITION 04.3   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is surjective.

DEFINITION 04.4   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is epic.

LEMMA 04.5   Let $ R$ be a (commutative) principal ideal domain (PID). Then an $ R$ -module $ I$ is injective if and only if it is divisible.

PROPOSITION 04.6   For any (not necessarily commutative) ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules has enough injectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists an injective object $ I$ and an monic morphism $ f: M \to I$ .

For the proof of the proposition above, we need the followin lemmas.

LEMMA 04.7   For any $ \mathbb{Z}$ -module $ M$ , let us denote by $ \hat M$ the module $ \operatorname{Hom}_\mathbb{Z}(M,\mathbb{T}_1)$ where $ T_1=\mathbb{R}/\mathbb{Z}$ . Then:
  1. For any free $ \mathbb{Z}$ -module $ F$ , $ \hat F$ is divisible (hence is $ \mathbb{Z}$ -injective).
  2. For any $ \mathbb{Z}$ -module $ M$ , there is a canonical injective $ \mathbb{Z}$ -homomorphism $ M\to \widehat{(\hat M)}$ .
  3. Any $ Z$ -module $ M$ may be embeded in a divisible module $ T$ .

LEMMA 04.8   Let $ T$ be a divisible module. Then for any ring $ A$ ,

$\displaystyle \operatorname{Hom}_\mathbb{Z}(A,T)
$

is $ A$ -injective.


next up previous
Next: Bibliography
2010-05-12