COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

04. projective and injective modules

LEMMA 4.1. Let R be a (unital associative but not necessarily commutative) ring. Then for any R-module M, the following conditions are equivalent.

- (1) M is a direct summand of free modules.
- (2) M is projective

COROLLARY 4.2. For any ring R, the category (R-modules) of R-modules have enough projectives. That means, for any object $M \in (R$ -modules), there exists a projective object P and a surjective morphism $f: P \to M$.

DEFINITION 4.3. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

 $M \xrightarrow{r \times} M$

is surjective.

DEFINITION 4.4. Let R be a commutative ring. We assume R is a domain (that means, R has no zero-divisors except for 0.)

An *R*-module *M* is said to be **divisible** if for any $r \in R \setminus \{0\}$, the multplication map

 $M \xrightarrow{r \times} M$

is epic.

LEMMA 4.5. Let R be a (commutative) principal ideal domain (PID). Then an R-module I is injective if and only if it is divisible.

PROPOSITION 4.6. For any (not necessarily commutative) ring R, the category (R-modules) of R-modules has enough injectives. That means, for any object $M \in (R$ -modules), there exists an injective object I and an monic morphism $f : M \to I$.

For the proof of the proposition above, we need the followin lemmas.

LEMMA 4.7. For any \mathbb{Z} -module M, let us denote by M the module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{T}_1)$ where $T_1 = \mathbb{R}/\mathbb{Z}$. Then:

- (1) For any free \mathbb{Z} -module F, \hat{F} is divisible (hence is \mathbb{Z} -injective).
- (2) For any \mathbb{Z} -module M, there is a canonical injective \mathbb{Z} -homomorphism $M \to (\widehat{M}).$
- (3) Any Z-module M may be embedded in a divisible module T.

LEMMA 4.8. Let T be a divisible module. Then for any ring A,

 $\operatorname{Hom}_{\mathbb{Z}}(A,T)$

is A-injective.