COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

01.Review of elementary definitions on modules.

DEFINITION 1.1. A (unital associative) ring is a set R equipped with two binary operations (addition $($ "+") and multiplication $($ " \cdot ")) such that the following axioms are satisfied.

(Ring1) R is an additive group with respect to the addition.

(Ring2) distributive law holds. Namely, we have

$$
a(b+c) = ab + bc, \quad (a+b)c = ac + bc \qquad (\forall a, \forall b, \forall c \in R).
$$

(Ring3) The multiplcation is associative.

(Ring4) R has a multiplicative unit.

For any ring R, we denote by 0_R (respectively, 1_R) the zero element of R (respectively, the unit element of R). Namely, 0_R and 1_R are elements of R characterized by the following rules.

- $a + 0_R = a$, $0_R + a = a \ \forall a \in R$.
- $a \cdot 1_R = a$, $1_R \cdot a = a \ \forall a \in R$.

When no confusion arises, we omit the subscript r_{R} and write 0, 1 instead of 0_R , 1_R .

DEFINITION 1.2. Let R be a unital associative ring. An R-module M is an additive group M with R -action

$$
R \times M \to M
$$

which satisfies

(Mod1)
$$
(r_1r_2).m = r_1.(r_2.m)
$$
 $(\forall r_1, \forall r_2 \in R, \forall m \in M)$
\n(Mod2) $1.m = m$ $(\forall m \in M)$
\n(Mod3) $(r_1 + r_2).m = r_1.m + r_2.m$ $(\forall r_1, \forall r_2 \in R, \forall m \in M)$.
\n(Mod4) $r.(m_1 + m_2) = r.m_1 + r.m_2$ $(\forall r \in R, \forall m_1, \forall m_2 \in M)$.

EXAMPLE 1.3. Let us give some examples of R -modules.

- (1) If k is a field, then the concepts "k-vector space" and "kmodule" are identical.
- (2) Every abelian group is a module over the ring of integers $\mathbb Z$ in a unique way.

DEFINITION 1.4. An subset M of an R-module N is said to be an R-submodule of N if M itself is an R-module and the inclusion map $j: M \to N$ is an R-module homomorphism.

DEFINITION 1.5. Let M, N be modules over a ring R. Then a map $f: M \to N$ is called an R-module homomorphism if it is additive and preserves the R-action.

The set of all module homomorphisms from M to N is denoted by $\text{Hom}_R(M, N)$. It has an structure of an module in an obvious manner.

DEFINITION 1.6. An subset N of an R-module M is said to be an R-submodule of M if N itself is an R-module and the inclusion map $j: N \to M$ is an R-module homomorphism.

YOSHIFUMI TSUCHIMOTO

DEFINITION 1.7. Let R be a ring. Let N be an R-submodule of an R-module M. Then we may define the **quotient** M/N by

$$
M/N = M/\sim_N
$$

where the equivalence relation \sim_N is defined as follows:

$$
m_1 \sim_N m_2 \quad \iff \quad m_1 - m_2 \in N.
$$

It may be shown that the quotient M/N so defined is actually an R module and that the natural projection

 $\pi : M \to M/N$

is an R-module homomorphism.

DEFINITION 1.8. Let $f : M \to N$ be an R-module homomorphism between R-modules. Then we define its kernel as follows.

$$
Ker(f) = f^{-1}(0) = \{ m \in M; f(m) = 0 \}.
$$

The kernel and the image of an R-module homomorphism f are Rmodules.

THEOREM 1.9. Let $f : M \rightarrow N$ be an R-module homomorphism between R-modules. Then

$$
M/\operatorname{Ker}(f) \cong f(N).
$$

DEFINITION 1.10. Let R be a ring. An "sequence"

$$
M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3
$$

is said to be an exact sequence of R -modules if the following conditions are satisfied

(Exact1) M_1, M_2 are R-modules.

(Exact2) f, g are R -module homomorphisms.

(Exact3) $Ker(g) = Image(f)$.

For any R-submodule N of an R-module M , we have the following exact sequence.

$$
0 \to N \to M \to M/N \to 0
$$

EXERCISE 1.1. Compute the following modules.

- (1) Hom_{$\mathbb{Z}(\mathbb{Z}/3\mathbb{Z}, \mathbb{Z})$.}
- (2) $\text{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$.
- (3) Hom_{$\mathbb{Z}(\mathbb{Q}, \mathbb{Z}/5\mathbb{Z})$.}