CATEGORIES, ABELIAN CATEGORIES AND COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

Adjoining inverses

DEFINITION 10.1. Let A be a commutative ring. Let S be its subset. We say that S is multiplicative if

 (1) 1 \in S

(2) $x, y \in S \implies xy \in S$

holds.

DEFINITION 10.2. Let S be a multiplicative subset of a commutative ring A. Then we define $A[S^{-1}]$ as

$$
A[{X_s; s \in S}] / ({\{sX_s - 1; s \in S\}})
$$

where in the above notation X_s is a indeterminate prepared for each element $s \in S$.) We denote by i_S a canonical map $A \to A[S^{-1}]$.

Lemma 10.3. *Let* S *be a multiplicative subset of a commutative ring* A. Then the ring $B = A[S^{-1}]$ is characterized by the following property: Let C be a ring, $\varphi : A \to C$ be a ring homomorphism such that $\varphi(s)$ *is invertible in* C *for any* $s \in S$. Then there exists a unique ring $homomorphism \psi = \phi[S^{-1}] : B \to C$ *such that*

$$
\varphi = \psi \circ \iota_S
$$

holds.

Corollary 10.4. *Let* S *be a multiplicative subset of a commutative ring* A*. Let* I *be an ideal of* A *given by*

$$
I = \{x \in I; \exists s \in S \text{ such that } sx = 0\}
$$

Then (1) *I is an ideal of A. Let us put* $\overline{A} = A/I$, $\pi : A \rightarrow \overline{A}$ *the canonical projection. Then:*

(2) $\bar{S} = \pi(S)$ *is multiplicatively closed. (3) We have*

$$
A[S^{-1}] \cong \bar{A}[\bar{S}^{-1}]
$$

$$
(4)\iota_{\bar{S}} : \bar{A} \to \bar{A}[\bar{S}^{-1}]
$$
 is injective.

DEFINITION 10.5. Let S be a multiplicative subset of a commutative ring A. Let M be an A-module we may define $S^{-1}M$ as

$$
\{(m/s); m \in M, s \in S\}/\sim
$$

where the equivalence relation \sim is defined by

$$
(m_1/s_1) \sim (m_2/s_2) \iff t(m_1s_2 - m_2s_1) = 0 \quad (\exists t \in S).
$$

We may introduce a $S^{-1}A$ -module structure on $S^{-1}M$ in an obvious manner.

 $S^{-1}M$ thus constructed satisfies an universality condition which the reader may easily guess.

YOSHIFUMI TSUCHIMOTO

Lemma 10.6. *Let* A *be a commutative ring. Let* M *be an* A*-module. Then we have a canonical isomorphism of* A_S *module*

$$
A_S\otimes_A M\cong M_S.
$$

We may also localize categories, but we need to deal with non commutativity of composition. To simplify the situation we only deal with a localization with some nice properties as follows:

- (1) (a) $s, t \in \Sigma \implies st \in \Sigma$ (b) $X \in Ob(\mathcal{C}) \implies 1_X \in \Sigma$.
- (2) Let $X, Y, Z \in Ob(\mathcal{C})$. Let $u \in Hom_{\mathcal{C}}(X, Y), s \in Hom_{\mathcal{C}}(Z, Y) \cap$ Σ. Then there exist $W ∈ Ob(C)$ and morphisms $v ∈ Hom_Ω(W, Z)$, and $t \in \text{Hom}_{\mathcal{C}}(W, X) \cap \Sigma$ such that the diagram

commutes.

In a simpler (but not rigorous) words, for each "composable $s^{-1}u^{\nu}$, there exists v, t such $s^{-1}u = vt^{-1}$. Similarly, for each composable us^{-1} , there exists v, t such that $us^{-1} = t^{-1}v$ holds.

- (3) Let $X, Y \in Ob(\mathcal{C}), u, v \in Hom_{\mathcal{C}}(X, Y)$. Then the following conditions are equivalent:
	- (a) There exists $Y' \in Ob(\mathcal{C})$ and $s \in Hom_{\mathcal{C}}(Y, Y') \cap \Sigma$ such that $su = sv$.
	- (b) There exists $X' \in Ob(\mathcal{C})$ and $t \in Hom_{\mathcal{C}}(Y, Y') \cap \Sigma$ such that $ut = vt$.
- (4) If $s \in \Sigma$ and if $su \in \Sigma$ then $u \in \Sigma$.

Lemma 10.7. *Let* Σ *be a family of morphisms in* C *which satisfies the properties above. Then one may construct a localization* of \mathfrak{C}_{Σ} *with respect to* Σ *. Furthermore, if* C *is additive, then* C_{Σ} *is also additive.*