CATEGORIES, ABELIAN CATEGORIES AND COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

Resolutions and derived functors

DEFINITION 6.1. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call F additive if for any objects M, N in \mathcal{C}_1 ,

$$\operatorname{Hom}(M, N) \to \operatorname{Hom}(F(M), F(N))$$

is additive.

DEFINITION 6.2. Let F be an additive functor from an abelian category \mathcal{C}_1 to \mathcal{C}_2 .

(1) F is said to be **left exact** (respectively, **right exact**) if for any exact sequence

$$0 \to L \to M \to N \to 0,$$

the corresponding map

$$0 \to F(L) \to F(M) \to F(N)$$

(respectively,

$$F(L) \to F(M) \to F(N) \to 0$$

is exact

(2) F is said to be **exact** if it is both left exact and right exact.

DEFINITION 6.3. Let (K^{\bullet}, d_K) , (L^{\bullet}, d_L) be complexes of objects of an additive category \mathcal{C} .

(1) A morphism of complex $u: K^{\bullet} \to L^{\bullet}$ is a family

$$u^j: K^j \to L^j$$

of morphisms in \mathcal{C} such that u commutes with d. That means,

$$u^{j+1} \circ d_K^j = d_K^j \circ u^j$$

holds.

(2) A homotopy between two morphisms $u, v : K^{\bullet} \to L^{\bullet}$ of complexes is a family of morphisms

$$h^j: K^j \to L^{j-1}$$

such that $u - v = d \circ h + h \circ d$ holds.

LEMMA 6.4. Let C be an abelian category that has enough injectives. Then:

(1) For any object M in \mathbb{C} , there exists an injective resolution of M. That means, there exists an complex I^{\bullet} and a morphism $\iota_M: M \to I^0$ such that

$$H^{j}(I^{\bullet}) = \begin{cases} M \ (via \ \iota_{M}) & \text{if } j = 0\\ 0 & \text{if } j \neq 0 \end{cases}$$

YOSHIFUMI TSUCHIMOTO

(2) For any morphism $f : M \to N$ of \mathbb{C} , and for any injective resolutions $(I^{\bullet}, \iota_M), (J^{\bullet}, \iota_N)$ of M and N (respectively), There exists a morphism $\overline{f} : I^{\bullet} \to J^{\bullet}$ of complexes which commutes with f. Forthermore, if there are two such morphisms \overline{f} and f', then the two are homotopic.

DEFINITION 6.5. Let \mathcal{C}_1 be an abelian category which has enough injectives. Let $F : \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object M of \mathcal{C}_1 we take an injective resolution I_M^{\bullet} of M and define

$$R^i F(M) = H^i(I_M^{\bullet}).$$

and call it the derived functor of F.

LEMMA 6.6. The derived functor is indeed a functor.