next up previous
Next: About this document ...

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

\fbox{Injective and projective objects}

DEFINITION 05.1  
  1. A morphism $ f: X\to Y$ in a category is said to be monic if for any object $ Z$ of $ \mathcal{C}$ and for any morphism $ g_1,g_2: Z\to X$ , we have

    $\displaystyle f\circ g_1 =f \circ g_2 \implies g_1=g_2
$

  2. A morphism $ f: X\to Y$ in a category is said to be epic if for any object $ Z$ of $ \mathcal{C}$ and for any morphism $ g_1,g_2: Y\to Z$ , we have

    $\displaystyle g_1\circ f = g_2 \circ f \implies g_1=g_2
$

PROPOSITION 05.2   Let $ \mathcal{C}$ be an abelian category. Then for any morphism $ f$ in $ \mathcal{C}$ , we have:
  1. $ f$ :monic $ \iff $ $ \operatorname{Ker}(f)=0$ .
  2. $ f$ :epic $ \iff $ $ \operatorname{Coker}(f)=0$ .

DEFINITION 05.3   Let $ \mathcal{C}$ be an abelian category.
  1. An object $ I$ in $ \mathcal{C}$ is said to be injective if it satisfies the following condition: For any morphism $ f:M \to I$ and for any monic morphism $ \iota:N \to M$ , $ f$ ``extends'' to a morphism $ \hat f: M\to I$ .

    $\displaystyle \begin{CD}
M @>\hat f »I \\
@A \iota AA @\vert \\
N @>f » I
\end{CD}$

  2. An object $ P$ in $ \mathcal{C}$ is said to be projective if it satisfies the following condition: For any morphism $ f: P \to N $ and for any epic morphism $ \pi:M \to N$ , $ f$ ``lifts'' to a morphism $ \hat f: M\to I$ .

    $\displaystyle \begin{CD}
P @>\hat f »M \\
@\vert @V\pi VV \\
P @>f » N
\end{CD}$

LEMMA 05.4   Let $ R$ be a (unital associative but not necessarily commutative) ring. Then for any $ R$ -module $ M$ , the following conditions are equivalent.
  1. $ M$ is a direct summand of free modules.
  2. $ M$ is projective

COROLLARY 05.5   For any ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules have enough projectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists a projective object $ P$ and an epic morphism $ f: P \to M$ .

DEFINITION 05.6   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .) An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is epic.

LEMMA 05.7   Let $ R$ be a (commutative) principal ideal domain (PID). Then an $ R$ -module $ I$ is injective if and only if it is divisible.

PROPOSITION 05.8   For any (not necessarily commutative) ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules has enough injectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists an injective object $ I$ and an monic morphism $ f:M \to I$ .


next up previous
Next: About this document ...
2010-04-20