CATEGORIES, ABELIAN CATEGORIES AND COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

Examples of categories

- (1) (Sets)=(Category of all sets.) For $X, Y \in$ (Sets), the set of morphism $\operatorname{Hom}_{(\operatorname{set})}(X, Y)$ is defined to be the set of all maps from X to Y.
- (2) (Groups)=(Category of all groups.) For $X, Y \in$ (Groups), the set of morphism $\operatorname{Hom}_{(\operatorname{group})}(X, Y)$ is defined to be the set of all group homomorphisms from X to Y.
- (3) (Abelian groups), (Commutative Rings), are defined in a similar manner.
- (4) For a given ring R, we define (R-modules) to be the category of all R-modules. Morphisms are R-module homomorphisms.
- (5) (Top)=(Category of all topological spaces.) For $X, Y \in (Top)$, the set of morphism $\operatorname{Hom}_{(top)}(X, Y)$ is defined to be the set of all continuous maps from X to Y.
- (6) (Hausdorff Sp.)=(the category of all Hausdorff spaces), (Compact Sp)=(the category of all Compact spaces) are defined in a similar manner.

DEFINITION 2.1. A (covariant) functor F from a category \mathcal{C} to a category \mathcal{D} consists of the following data:

- (1) An function which assigns to each object C of \mathfrak{C} an object F(C) of \mathfrak{D} .
- (2) An function which assigns to each morphism f of \mathcal{C} an morphism F(f) of \mathcal{D} .

The data must satisfy the following axioms:

(functor-1) $F(1_C) = 1_{F(C)}$ for any object C of C.

(functor-2) $F(f \circ g) = F(f) \circ F(g)$ for any composable morphisms f, g of \mathcal{C} .

By employing an axiom

(functor-2') $F(f \circ g) = F(g) \circ F(f)$ for any composable morphisms instead of axiom (functor-2) above, we obtain a definition of a **contravariant functor**.