CATEGORIES, ABELIAN CATEGORIES AND COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

Let us denote by $C^{\infty}(M, N)$ the set of all differentiable maps from M to N. A so-called "de Rham cohomology" of S^1 is computed as a cohomology of a complex

$$C^{\infty}(S^1; \mathbb{R}) \xrightarrow{d/dt} C^{\infty}(S^1; \mathbb{R})$$

We see that:

$$H^0_{\mathrm{de \ Rham}}(S^1;\mathbb{R}) = \mathbb{R}, \quad H^1_{\mathrm{de \ Rham}}(S^1;\mathbb{R}) = \mathbb{R}$$

Actually, the dimension of the 0-th cohomology is related to a number of the connected component of S^1 . The dimension of the 1-st cohomology is related to a number of the 'hole' of S^1 . Cohomology is then a good tool to obtain numbers ("invariants") of geometric objects.

Cohomology also arises as "obstructions". Indeed, the de Rham cohomology of the S^1 tells us a hint about "which functions are integrable", etc.

In this talk we give a definition and explain some basic properties of cohomologies. But before that, we first deal with some category theory.

DEFINITION 1.1. A category \mathcal{C} is a collection of the following data

- (1) A collection $Ob(\mathcal{C})$ of **objects** of \mathcal{C} .
- (2) For each pair of objects $X, Y \in Ob(\mathcal{C})$, a set

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y)$

of morphisms.

(3) For each triple of objects $X, Y, Z \in Ob(\mathcal{C})$, a map("composition (rule)")

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \to \operatorname{Hom}_{\mathfrak{C}}(X,Z)$

satisfying the following axioms

- (1) $\operatorname{Hom}(X, Y) \cap \operatorname{Hom}(Z, W) = \emptyset$ unless (X, Y) = (Z, W).
- (2) (Existence of an identity) For any $X \in Ob(\mathcal{C})$, there exists an element $id_X \in Hom(X, X)$ such that

$$\operatorname{id}_X \circ f = f, \quad g \circ \operatorname{id}_X = g$$

holds for any $f \in \text{Hom}(S, X), g \in \text{Hom}(X, T) \ (\forall S, T \in \text{Ob}(\mathcal{C})).$

(3) (Associativity) For any objects $X, Y, Z, W \in Ob(\mathcal{C})$, and for any morphisms $f \in Hom(X, Y), g \in Hom(Y, Z), h \in Hom(Z, W)$, we have

$$(f \circ g) \circ h = f \circ (g \circ h)$$

DEFINITION 1.2. A **universe** U is a nonempty set satisfying the following axioms:

- (1) If $x \in U$ and $y \in x$, then $y \in U$.
- (2) If $x, y \in U$, then $\{x, y\} \in U$.
- (3) If $x \in U$, then the power set $2^x \in U$.
- (4) If $\{x_i | i \in I\}$ is a family of elements of U indexed by an element $I \in U$, then $\bigcup_{i \in I} x_i \in U$.

LEMMA 1.3. Let U be an universe. Then the following statements hold.

- (1) If $x \in U$, then $\{x\} \in U$.
- (2) If x is a subset of $y \in U$, then $x \in U$.
- (3) If $x, y \in U$, then the ordered pair $(x, y) = \{\{x, y\}, x\}$ is in U.
- (4) If $x, y \in U$, then $x \cup y$ and $x \times y$ are in U.
- (5) If $\{x_i | i \in I\}$ is a family of elements of U indexed by an element $I \in U$, then we have $\prod_{i \in I} x_i \in U$.

In this text we always assume the following.

For any set S, there always exists a universe U such that $S \in U$.

EXERCISE 1.1. Let us put

 $C^{\infty}(\mathbb{R};\mathbb{R}) = \{ f :\in C^{\infty}(\mathbb{R};\mathbb{R}), \text{support of } f \text{ is compact} \}$

Then:

(1) Compute the cohomology group of the following complex.

$$C^{\infty}(\mathbb{R};\mathbb{R}) \to C^{\infty}(\mathbb{R};\mathbb{R})$$

(2) Compute the cohomology group of the following complex.

$$C^{\infty}_{\mathrm{cpt}}(\mathbb{R};\mathbb{R}) \to C^{\infty}_{\mathrm{cpt}}(\mathbb{R};\mathbb{R})$$