No.10: The ring of Witt vectors when A is a ring of characteristic $p \neq 0$.

DEFINITION 10.1. Let A be a commutative ring. For any $a \in A$, we denote by [a] the element of $W_1(A)$ defined as follows:

$$
[a] = (1 - aT)
$$

We call $[a]$ the Teichmüller lift" of a

Lemma 10.2. *Let* A *be a commutative ring. Then:*

- (1) $(\mathcal{W}_1(A), \boxplus, \boxtimes)$ *is a commutative ring with the zero element* [0] *and the unity* [1]*.*
- (2) *For any* $a, b \in A$ *, we have*

$$
[a] \boxtimes [b] = [ab]
$$

Proposition 10.3. *Let* p *be a prime number. Let* A *be a ring of characteristic* p*. Then:*

(1) *If* n *is a positive integer which is not divisible by* p*, then* n *is invertible in* $W_1(A)$ *. To be more precise,*

$$
\frac{1}{n} \boxdot [1] = (1 - T)^{\frac{1}{n}} = 1 + \sum_{j=1}^{\infty} {\binom{\frac{1}{n}}{j}} (-T)^j.
$$

- (2) $p\Box: W_1(A) \rightarrow W_1(A)$ *is an injection.*
- (3) *For any positive integer* n *which is not divisible by* p*, we define*

$$
e_n = \frac{1}{n} \boxdot (1 - T^n).
$$

as an element of $W_1(A)$ *.*

- (4) *For any positive integer* n*,* eⁿ *is an idempotent. (That means,* $e_n^{\boxtimes 2} = e_n$.)
- (5) If $n|m$, then $e_n \succeq e_m$ in the order of idempotents. That means, $e_n \boxtimes e_m = e_m$.

PROOF. (1) follows from the next lemma. \square

 \Box

Lemma 10.4. *Let* n *be a positive integer. Let* k *be a non negative integer. Then we have always*

$$
\binom{\frac{1}{n}}{k} \in \mathbb{Z} \left[\frac{1}{n} \right].
$$

PROOF.

$$
\binom{\frac{1}{n}}{k} \in \mathbb{Z} \left[\frac{1}{n} \right]
$$
\n
$$
= \frac{\frac{1}{n} (\frac{1}{n} - 1) \cdots (\frac{1}{n} - (k - 1))}{k!}
$$
\n
$$
= \frac{1}{n^k} \frac{(1(1-n)(1-2n)\dots(1-(k-1)n)}{k!}
$$

So the result follows from the next sublemma. $\hfill \Box$

Sublemma 10.5. *Let* n *be a positive integer. Let* k *be a non negative integer.* Let ${a_j}_{j=1}^k \subset \mathbb{Z}$ be an arithmetic progression of common *difference* n*. Then:*

(1) *For any positive integer* m *which is relatively prime to* n*, we have*

$$
\#\{j;\ m|a_j\}\geq \left\lfloor\frac{k}{m}\right\rfloor
$$

(2) *For any prime* p *which does not divide* n*, let us define*

$$
c_{k,p} = \sum_{i=1}^{\infty} \lfloor \frac{k}{p^i} \rfloor
$$

(which is evidently a finite sum in practice.) Then

$$
p^{c_{k,p}}|\prod_{j=1}^k a_j
$$

(3)

$$
p^{c_{k,p}}|k!, \t p^{c_{k,p}+1} |k!
$$

(4)

$$
\frac{\prod_{j=1}^{k} a_j}{k!} \in \mathbb{Z}_{(p)}
$$

PROOF. (1) Let us put $t = \lfloor \frac{k}{m} \rfloor$ $\frac{k}{m}$. Then we divide the set of first kt-terms of the sequence $\{a_j\}$ into disjoint sets in the following way.

$$
S_0 = \{a_1, a_2, \dots, a_m\},
$$

\n
$$
S_1 = \{a_{m+1}, a_{m+2}, a_{m+m}\},
$$

\n
$$
S_2 = \{a_{2m+1}, a_{2m+2}, a_{2m+m}\},
$$

\n...
\n
$$
S_{t-1} = \{a_{(t-1)m+1}, a_{(t-1)m+2}, \dots, a_{(t-1)m+m}\}
$$

Since m is coprime to n, we see that each of the S_u gives a complete representative of $\mathbb{Z}/n\mathbb{Z}$.

(2): Apply (1) to the cases where $m = p, p^2, p^3, \ldots$ and count the powers of p which appear in $\prod a_j$.

(3): Easy. (4) is a direct consequence of $(2),(3)$.

Proposition 10.6. *Let* p *be a prime. Let* A *be an integral domain of characteristic* p. Let us define an idempotent f of $W_1(A)$ as follows.

$$
f = \bigvee_{\substack{n>1\\ p \nmid h}} e_n (= [1] \boxminus \prod_{\substack{p \mid h\\ n>1}}^{\boxtimes} ([1] \boxminus e_n))
$$

Then f *defines a direct product decomposition*

$$
\mathcal{W}_1(A) \cong (f \boxtimes \mathcal{W}_1(A)) \times ((1 \boxminus f) \boxtimes \mathcal{W}_1(A)).
$$

Furthermore, the factor algebra $(1 \boxminus f) \boxtimes W_1(A)$ *is isomorphic to the ring* $W^{(p)}(A)$ *of p-adic Witt vectors.*

The following proposition tells us the importance of the ring of p -adic Witt vectors.

Proposition 10.7. *Let* p *be a prime. Let* A *be a commutative ring of characteristic* p*. For each positive integer* k *which is not divisible by* p, let us define an idempotent f_k of $W_1(A)$ as follows.

$$
f_k = \bigvee_{\substack{p \mid h \\ n > 1}} e_{kn} (= e_k \boxminus \prod_{\substack{p \mid h \\ n > 1}}^{\boxtimes} (e_k \boxminus e_{kn}))
$$

Then f^k *defines a direct product decomposition*

$$
e_k \mathcal{W}_1(A) \cong (f_k \boxtimes \mathcal{W}_1(A)) \times ((1 \boxminus f_k) \boxtimes \mathcal{W}_1(A)).
$$

Furthermore, the factor algebra $(1 \boxminus f_k) \boxtimes W_1(A)$ *is isomorphic to the* $ring W^{(p)}(A)$ *of p-adic Witt vectors. Thus we have a direct product decomposition*

$$
\mathcal{W}_1(A) \cong \mathcal{W}^{(p)}(A)^{\mathbb{N}}.
$$

To understand the mechanism which appears in the proposition above, it would be better to prove the following

Lemma 10.8. *Let* p *be a prime number. Let* A *be a ring of characteristic* p*. Then for any* n *which is not divisible by* p*, a map*

$$
\frac{1}{n} \boxdot V_n : (\mathcal{W}_1(A), \boxplus, \boxtimes) \to (\mathcal{W}_1(A), \boxplus, \boxtimes)
$$

is a ring homomorphism. Its image is equal to the range of the idempotent en*. That means,*

Image
$$
(\frac{1}{n} \boxdot V_n) = e_n \boxtimes \mathcal{W}_1(A) = \{ \sum_j^{\boxplus} (1 - y_j T^{nj}); y_j \in A \}.
$$

PROOF. V_n is already shown to be additive. The following calculation shows that $\frac{1}{n} \cdot V_n$ preserves the ⊠-multiplication.

$$
\left(\frac{1}{n}\,\Box V_n(1-xT^a)\right)\boxtimes\left(\frac{1}{n}\,\Box V_n(1-yT^b)\right)
$$

$$
=\left(\frac{1}{n}\,\Box\,(1-xT^{an})\right)\boxtimes\left(\frac{1}{n}\,\Box\,(1-yT^{bn})\right)
$$

$$
=\frac{1}{n^2}\,\Box\,(1-x^{m/a}y^{m/b}T^{nm})^d
$$

$$
=\frac{1}{n}\,\Box\left((1-xT^a)\boxtimes(1-yT^b)\right)
$$

 \Box

In preparing from No.7 to No.10 of this lecture, the following reference (especially its appendix) has been useful:

http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf