next up previous
Next: About this document ...

$ \mathbb{Z}_p$ , $ \mathbb{Q}_p$ , and the ring of Witt vectors

No.09: \fbox{Witt algebras (3) The ring of $p$-adic Witt vectors}

DEFINITION 09.1   Let $ A$ be any commutative ring. Let $ n$ be a positive integer. Let us define additive operators $ V_n,F_n$ on $ \mathcal W_1(A)$ by the following formula.

$\displaystyle V_n(f(T))=f(T^n).
$

$\displaystyle F_n(f(T))=\prod_{\zeta\in \mu_n} f(\zeta T^{1/n})
$

(The latter definition is a formal one. That means, $ F_n$ is actually defined to be the unique continuous additive map which satisfies

% latex2html id marker 633
$\displaystyle F_n(1-a T^l)= (1-a ^{m/l} T^{m/n})^{l n/m} \qquad(m=l.c.m(n,l)).
$

)

LEMMA 09.2   Let $ p$ be a prime number. Let $ A$ be acommutative ring of characteristic $ p$ . Then:
  1. We have

    % latex2html id marker 646
$\displaystyle F_p(f(T))=(f(T^{1/p}))^{p} \qquad (\forall f\in \mathcal W_1(A)).
$

    in partucular, $ F_p$ is an algebra endomorphism of $ \mathcal W_1(A)$ in this case.
  2. $\displaystyle V_p(F_p(f)=F_p (V_p(f))=(f(T))^p=p \boxdot f(T)
(=\overbrace{f(T)\boxplus\dots \boxplus f(T)}^{p}).
$

DEFINITION 09.3   Let $ A$ be any commutative ring. Let $ p$ be a prime number. We denote by

$\displaystyle \mathcal W^{(p)} (A)=A^{\mathbb{N}}.
$

and define

$\displaystyle \pi_p: \mathcal W_1(A) \to \mathcal W^{(p)}(A)
$

by

$\displaystyle \pi_p
\left (
\sideset{}{^{\boxplus }}\sum _{j=1}^{\infty}
(1-x_j T^j)
\right )
= (x_1,x_p,x_{p^2},x_{p^3}\dots).
$

LEMMA 09.4   Let us define polynomials $ \alpha_j(X,Y)\in \mathbb{Z}[X,Y]$ as follows.

$\displaystyle (1-x T)(1-y T)=\prod_{j=1}^\infty (1-\alpha_j(x,y) T^j).
$

Then we have the following rule for ``carry operation'':

$\displaystyle (1-x T^n)\boxplus (1-y T^n)
=\sideset{}{^\boxplus}\sum_{j=1}^{\infty} (1-\alpha_j(x,y)T^{j n}).
$

PROPOSITION 09.5   There exist unique binary operators $ \boxplus $ and $ \boxtimes $ on $ \mathcal W^{(p)}(A)$ such that the following diagrams commute.

$\displaystyle \begin{CD}
\mathcal W_1 (A)\times \mathcal W_1 (A) @>\boxplus » ...
...W^{(p)}(A)\times \mathcal W^{(p)}(A) @>\boxplus » \mathcal W^{(p)}(A)
\end{CD}$

$\displaystyle \begin{CD}
\mathcal W_1 (A)\times \mathcal W_1 (A) @>\boxtimes »...
...^{(p)}(A)\times \mathcal W^{(p)}(A) @>\boxtimes » \mathcal W^{(p)}(A)
\end{CD}$

PROOF.. Using the rule as in the previous lemma, we see that addition descends to an addition of $ \mathcal W^{(p)}(A)$ . It is easier to see that the multiplication also descends.

% latex2html id marker 695
$ \qedsymbol$

DEFINITION 09.6   For any commutative ring $ A$ , elements of $ W^{(p)}(A)$ are called $ p$ -adic Witt vectors over $ A$ . The ring $ (W^{(p)}(A),\boxplus,\boxtimes)$ is called the ring of $ p$ -adic Witt vectors over $ A$ .


next up previous
Next: About this document ...
2008-06-27