\mathbb{Z}_p , \mathbb{Q}_p , AND WITT ALGEBRAS

No.06: \mathbb{Q}_p

DEFINITION 6.1. We denote by \mathbb{Q}_p the quotient field of \mathbb{Z}_p .

LEMMA 6.2. Every non zero element $x \in \mathbb{Q}_p$ is uniquely expressed as

$$x = p^k u \qquad (k \in \mathbb{Z}, u \in \mathbb{Q}_p^{\times}).$$

We have so far constructed a ring \mathbb{Z}_p and a field \mathbb{Q}_p for each prime p.

PROPOSITION 6.3. Let p be a prime. Then:

(1) \mathbb{Z}_p is a local ring with the unique maximal ideal $p\mathbb{Z}_p$. (2)

$$\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p(=\mathbb{Z}/p\mathbb{Z})$$

(3) \mathbb{Z}_p is an integral domain whose quotient field \mathbb{Q}_p is a field of <u>characteristic zero</u>.

With \mathbb{Q}_p and/or \mathbb{Z}_p , we may do some "calculus" such as:

THEOREM 6.4. [1, corollary 1 of theorem 1] Let $f \in \mathbb{Z}_p[X_1, X_2, \ldots, X_m], x \in \mathbb{Z}_p^m$, $n, k \in \mathbb{Z}$. Assume that there exists a natural number j such that $1 \leq j \leq m$,

$$\frac{\partial f}{\partial X_j}(x) \not\equiv 0 \pmod{p}.$$

Then there exists $y \in \mathbb{Z}_p^m$ such that

- (1) f(y) = 0
- (2) $y \equiv x \pmod{p}$

See [1] for details.

References

[1] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.