\mathbb{Z}_p , \mathbb{Q}_p , AND WITT ALGEBRAS

No.06: $\boxed{\mathbb{Q}_p}$

DEFINITION 6.1. We denote by \mathbb{Q}_p the quotient field of \mathbb{Z}_p .

LEMMA 6.2. *Every non zero element* $x \in \mathbb{Q}_p$ *is uniquely expressed as*

$$
x = p^k u \qquad (k \in \mathbb{Z}, u \in \mathbb{Q}_p^{\times}).
$$

We have so far constructed a ring \mathbb{Z}_p and a field \mathbb{Q}_p for each prime \hat{p} .

Proposition 6.3. *Let* p *be a prime. Then:*

(1) \mathbb{Z}_p *is a local ring with the unique maximal ideal* $p\mathbb{Z}_p$ *.* (2)

$$
\mathbb{Z}_p/p\mathbb{Z}_p\cong \mathbb{F}_p(=\mathbb{Z}/p\mathbb{Z}).
$$

(3) \mathbb{Z}_p *is an integral domain whose quotient field* \mathbb{Q}_p *is a field of characteristic zero.*

With \mathbb{Q}_p and/or \mathbb{Z}_p , we may do some "calculus" such as:

THEOREM 6.4. [1, corollary 1 of theorem 1] Let $f \in \mathbb{Z}_p[X_1, X_2, \ldots, X_m], x \in$ \mathbb{Z}_p^m , $n, k \in \mathbb{Z}$. Assume that there exists a natural number j such that $1 \leq j \leq m$,

$$
\frac{\partial f}{\partial X_j}(x) \not\equiv 0 \pmod{p}.
$$

Then there exists $y \in \mathbb{Z}_p^m$ *such that*

- (1) $f(y) = 0$
- (2) $y \equiv x \pmod{p}$

See [1] for details.

REFERENCES

[1] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.