\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

No.04: Review

There are several ways to define \mathbb{Z}_p :

- (1) \mathbb{Z}_p is the completion of \mathbb{Z} with respect to the *p*-adic metric d_p .
- (2) \mathbb{Z}_p is the projective limit $\varprojlim_k (\mathbb{Z}/p^k\mathbb{Z})$.
- (3)

$$\mathbb{Z}_p = \{ [0.a_0 a_1 a_2 \dots]_p; a_i \in \{0, 1, 2, 3, \dots, p-1\} \}$$

DEFINITION 4.1. We equip

 $\lim_{k \to k} (\mathbb{Z}/p^k \mathbb{Z}) = \{ (b_j)_{j=1}^{\infty}; b_j \in \mathbb{Z}/p^j \mathbb{Z}, (b_{j_1} \text{ modulo } p^{j_2}) = b_{j_2} \text{ whenever } j_1 > j_2 \}$

with the following "p-addic norm".

$$|(b_j)|_p = \begin{cases} \frac{1}{p^k} & \text{if } b_k = 0 \text{ and } b_{k+1} \neq 0\\ 0 & \text{if } (b_j) = 0 \end{cases}$$

Then we define "p-addic metric" d_p on $\varprojlim_k \mathbb{Z}/p^k\mathbb{Z}$ in an obvious way.

LEMMA 4.2. A natural map $\iota : (\mathbb{Z}, d_p) \to (\varprojlim_k (\mathbb{Z}/p^k \mathbb{Z}), d_p)$ defined by

$$\iota: \mathbb{Z} \ni n \mapsto (n, n, n \dots) \in \varprojlim_k (\mathbb{Z}/p^k \mathbb{Z})$$

is an isometry.

EXERCISE 4.1. Prove the lemma above.